Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1610015(2021)

Super-Resolution Infrared Remote-Sensing Target-Detection Algorithm Based on Deep Learning

Shuo Huang1,2, Yong Hu1,2、*, MingJian Gu1, Cailan Gong1,2, and Fuqiang Zheng1,2,3
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(15)
    Structure of WDSR
    Process of sampling
    Diagrams of multiscale feature extraction networks. (a) Feature extraction network in Faster RCNN; (b) multiscale feature extraction network
    Comparison of target detection results. (a) Before improvement; (b) after improvement
    Digram of SROD
    Impact of resolution on the accuracy of dataset recognition
    Comparison of results. (a) Direct detection results; (b) training with infrared data; (c) after super-resolution reconstruction
    Detection results of super-resolution reconstructed image. (a) Bicubic; (b) ScSR; (c) SRCNN; (d) WDSR
    SROD ship detection results of the entire image
    Comparison of detection results of different methods. (a) Real target; (b) detection result of saliency segmentation; (c) detection result of SROD; (d) detection result of Faster RCNN
    Ship targets of different sizes. (a) Large; (b) medium; (c) small
    • Table 1. Structure of ResNet101

      View table

      Table 1. Structure of ResNet101

      Layer nameOutput sizeConfig
      Conv11/27×7, 64, stride 2
      Conv2_x1/43×3 max pooling , stride 2
      1×1643×3641×1256×3
      Conv3_x1/81×11283×31281×1512×4
      Conv4_x1/161×12563×32561×11024×23
      Conv5_x1/321×15123×35121×12048×3
      Classifier1×1Average pooling, 1000-dFC, Softmax
    • Table 2. UAV data parameters

      View table

      Table 2. UAV data parameters

      ParameterValue
      Array size640×480
      Wavelength range /mm7.5~14.0
      Pixel size /mm17
      Focal length /mm35
      Angular resolution /mrad0.68
      Data formatU16(Unsigned 16 bits)
      Number of pictures taken when the imager sweeps a line5
    • Table 3. Detection results

      View table

      Table 3. Detection results

      AlgorithmT'NΔTΔNP /%R /%
      Salience algorithm196289529367.8079.03
      Faster RCNN180214683484.1172.58
      SROD202228462688.5981.45
    • Table 4. Target type statistics

      View table

      Table 4. Target type statistics

      AlgorithmParameterNumber of detected targetsTotal
      Large targetMedium targetSmall target
      SRODT'485896202
      ΔT134246
      ΔN108826
      N5866104228
      P /%82.7587.8792.3088.59
      R /%97.9195.0869.5681.45
      Faster RCNNT'435186180
      ΔT685468
      ΔN199634
      N626092214
      P /%69.358593.4784.11
      R /%87.7586.4461.4272.58
    Tools

    Get Citation

    Copy Citation Text

    Shuo Huang, Yong Hu, MingJian Gu, Cailan Gong, Fuqiang Zheng. Super-Resolution Infrared Remote-Sensing Target-Detection Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1610015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 5, 2020

    Accepted: Dec. 27, 2020

    Published Online: Aug. 19, 2021

    The Author Email: Yong Hu (huyong@mail.sitp.ac.cn)

    DOI:10.3788/LOP202158.1610015

    Topics