Infrared and Laser Engineering, Volume. 51, Issue 6, 20220300(2022)
Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)
[1] Shi Shaoping, Tian Long, Wang Yajun, et al. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes[J]. Physical Review Letters, 125, 070502(2020).
[2] Wang Qingwei, Li Wei, Wu Yimiao, et al. Demonstration of 1→3 continuous-variable quantum telecloning[J]. Physical Review A, 104, 032419(2021).
[3] Liang Hexi, Dai Yonghong, Ai Yong, . Design and test of space optical coupling balance detector[J]. Infrared and Laser Engineering, 46, 0320002(2017).
[4] Kong Yingxiu, Ke Xizheng, Yang Yuan. Impact of local oscillator power on SNR in space coherent optical communications[J]. Infrared and Laser Engineering, 45, 0222002(2016).
[5] Lin Xuling, Wu Zhiqiang, Yang Song, . A weak signal detection technique applied in deep space exploration[J]. Infrared and Laser Engineering, 46, 0913002(2017).
[6] Sun Xiaocong, Wang Yajun, Tian Yuhang, et al. Deterministic and universal quantum squeezing gate with a teleportation‐like protocol[J]. Laser & Photonics Reviews, 12, 2100329(2021).
[7] [7] Yang Wenhai. Experimental instrumented study of strong squeezing quantum light source[D]. Taiyuan: Shanxi University, 2018. (in Chinese)
[8] Jin Xiaoli, Su Jing, Zheng Yaohui, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes[J]. Opt Express, 23, 23859-23866(2015).
[9] Huang Duan, Fang Jian, Wang Chao, et al. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution[J]. Chin Phys Lett, 30, 114209(2013).
[10] [10] Du Shanna. Research on quantum classical channel multiplexing source independent security of continuous variable quantum key distribution with entangled states[D]. Taiyuan: Shanxi University, 2021. (in Chinese)
[11] Bai Yunfei, Zhang Junxiang. The experimental investigation of time-domain balanced homodyne detection of weak pulse[J]. Journal of Quantum Optics, 2, 84-89(2011).
[12] Ma Lixia, Qin Jiliang, Yan Zhihui, . Fast response balanced homodyne detector for continuous-variable quantum memory[J]. Acta Optica Sinica, 38, 0227001(2018).
[13] Lu Huadong, Su Jing, Zheng Yaohui, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Opt Lett, 39, 1117-1120(2014).
[14] Goda Keisuke, Miyakawa O, Mikhailov E E, et al. A quantum-enhanced prototype gravitational-wave detector[J]. Nat Phys, 4, 472(2008).
[15] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Phys, 7, 962-965(2011).
[16] Stefszky M, Mow-Lowry C M, Chua S S Y, et al. Balanced homodyne detection of optical quantum states at audio-band frequencies and below[J]. Classical and Quantum Gravity, 29, 145015(2012).
[17] Vahlbruch H, Chelkowski S, Danzmann K, et al. Quantum engineering of squeezed states for quantum communication and metrology[J]. New J Phys, 371(2007).
[18] Jennrich O. LISA technology and instrumentation[J]. IOP Publishing, 26, 153001-153032(2009).
[19] Luo Ziren, Bai Shan, Bian Xing, . Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 43, 415-447(2013).
[20] Wang Zhi, Sha Wei, Chen Zhe, . Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 11, 131-151(2018).
[21] Liu Heshan, Gao Ruihong, Luo Ziren, . Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 12, 486-492(2019).
[22] Wang Luyu, Li Yuqiong, Cai Rong. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics, 14, 1426-1434(2021).
[23] Wang Yajun, Gao Li, Zhang Xiaoli, . Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 49, 20201073(2020).
[24] Luo Jun, Chen Lisheng, Duan Huizhong, et al. Tianqin: A space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 33, 035010(2015).
[25] [25] Shubhashish Datta, Abhay Joshi, Jim Rue. Largearea InGaAs quad photeceiver f laser interferometry space antenna[C]Nanophotonics Macrophotonics f Space Environments IV, 2010.
[26] Patrick Kwee, Benno Willke, Karsten Danzmann. Shot-noise-limited laser power stabilization with a high-power photodiode array[J]. Optics Letters, 34, 2912-2914(2009).
[27] Li Yuqiong, Wang Luyu, Wang Chenyu. Preliminary test of performance detection and analysis of weak-light detector for space gravitational wave detection[J]. Optics and Precision Engineering, 27, 1710-1718(2019).
[28] [28] Fernández Barranco. Photodetection in intersatellite laser interferometers[D]. Hannover: Gottfried Wilhelm Leibniz Universitt, 2017.
[29] Sun Xiaocong, Wang Yajun, Tian Long, et al. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection[J]. Chinese Optics Letters, 83-86(2019).
[30] [30] Wang Jinrong. Experimental study of highperfmance photodetect in the squeezed light source[D]. Taiyuan: Shanxi University, 2021. (in Chinese)
[31] Jin Xiaoli, Su Jing, Zheng Yaohui. Influence of the non-ideal balanced homodyne detection on the measured squeezing degree[J]. Acta Optica Sinica, 36, 1027001(2016).
[32] Xue Jia, Qin Jiliang, Zhang Yuchi, . Measurement of standard vacuum noise at low frequencies[J]. Acta Phys Sin, 65, 044211(2016).
[33] Wang Shaofeng, Xiang Xiao, Zhou Conghua, et al. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification[J]. Rev Sci Instrum, 131, 013107(2017).
[34] [34] Kay A. Operational Amplifier Noise: Techniques Tips f Analyzinig Reducing Noise [M]. Amsterdam: Elsevier Publication, 2012.
[35] Tröbs M, Heinzel G. Improved spectrum estimation from digitized time series on a logarithmic frequency axis[J]. Measurement, 39, 120-129(2006).
Get Citation
Copy Citation Text
Weijie Wang, Fan Li, Jianbo Li, Mingjian Ju, Li'ang Zheng, Yuhang Tian, Wangbao Yin, Long Tian, Yaohui Zheng. Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220300
Category: Special issu
Received: Feb. 20, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: Wangbao Yin (ywb65@sxu.edu.cn), Long Tian (tianlong@sxu.edu.cn)