Acta Optica Sinica, Volume. 43, Issue 18, 1828003(2023)

Radiometric Response Evaluation of FY-3D/MERSI-II Reflective Solar Bands Based on Deep Convective Cloud

Bei Zhang1,2, Xiuqing Hu1,2、*, Weiwei Zhou3, Ling Wang1,2, Lin Chen1,2, and Peng Zhang1,2
Author Affiliations
  • 1National Satellite Meteorological Center (National Center for Space Weather), Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China
  • 2Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China
  • 3School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
  • show less
    References(31)

    [1] Zhu A J, Hu X Q, Lin M Y et al. Global data acquisition methods and data distribution for FY-3D meteorological satellite[J]. Journal of Marine Meteorology, 38, 1-10(2018).

    [2] He X W, Feng X H, Han Q et al. Cross-calibration of FY-3C medium resolution spectral imager in reflective bands[J]. Optics and Precision Engineering, 28, 1462-1470(2020).

    [3] Uprety S, Cao C Y. Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites[J]. Remote Sensing of Environment, 166, 106-115(2015).

    [4] Zhu S F, Qie L L, Xu H et al. In-flight cross radiometric calibration of DPC/GaoFen-5 and MODIS/aqua[J]. Acta Optica Sinica, 42, 1828008(2022).

    [5] Hu X Q, Liu J J, Sun L et al. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing, 36, 566-582(2010).

    [6] Cao C Y, Xiong J, Blonski S et al. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring[J]. Journal of Geophysical Research: Atmospheres, 118, 11664-11678(2013).

    [7] Bhatt R, Doelling D, Wu A S et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets[J]. Remote Sensing, 6, 2809-2826(2014).

    [8] Xu N, Wu R H, Hu X Q et al. Integrated method for on-obit wide dynamic vicarious calibration of FY-3C MERSI reflective solar bands[J]. Acta Optica Sinica, 35, 1228001(2015).

    [9] Uprety S, Cao C Y, Blonski S et al. Evaluating radiometric consistency between Suomi NPP VIIRS and NOAA-19 AVHRR using extended simultaneous nadir overpass in the low latitudes[J]. Proceedings of SPIE, 8866, 88660L(2013).

    [10] Cao C Y, Bai Y, Wang W H et al. Radiometric inter-consistency of VIIRS DNB on Suomi NPP and NOAA-20 from observations of reflected lunar lights over deep convective clouds[J]. Remote Sensing, 11, 934(2019).

    [11] Wang L, Hu X Q, Zheng Z J et al. Radiometric calibration tracking detection for FY-3A/MERSI by joint use of snow targets in south and north poles[J]. Acta Optica Sinica, 38, 0212003(2018).

    [12] Sohn B J, Ham S H, Yang P. Possibility of the visible-channel calibration using deep convective clouds overshooting the TTL[J]. Journal of Applied Meteorology and Climatology, 48, 2271-2283(2009).

    [13] Chen L, Hu X Q, Xu N et al. The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of FY-3A/MERSI (medium resolution spectral imager)[J]. Remote Sensing, 5, 6958-6975(2013).

    [14] Chen L, Xu N, Hu X Q et al. Study on orbit radiometric calibration for FY-2 visible band based on deep convective cloud[J]. Spectroscopy and Spectral Analysis, 36, 2639-2645(2016).

    [15] Wang W H, Cao C Y. Monitoring the NOAA operational VIIRS RSB and DNB calibration stability using monthly and semi-monthly deep convective clouds time series[J]. Remote Sensing, 8, 32(2016).

    [16] Bhatt R, Doelling D, Wu A S et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets[J]. Remote Sensing, 6, 2809-2826(2014).

    [17] Bhatt R, Doelling D R, Scarino B R et al. Advances in utilizing tropical deep convective clouds as a stable target for on-orbit calibration of satellite imager reflective solar bands[J]. Proceedings of SPIE, 11127, 111271H(2019).

    [19] Bhatt R, Doelling D, Scarino B et al. Development of seasonal BRDF models to extend the use of deep convective clouds as invariant targets for satellite SWIR-band calibration[J]. Remote Sensing, 9, 1061(2017).

    [20] Wang W H, Cao C Y. Evaluation of NOAA-20 VIIRS reflective solar bands early on-orbit performance using daily deep convective clouds recent improvements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3975-3985(2020).

    [21] Chang T J, Xiong X X, Mu Q Z. VIIRS reflective solar band radiometric and stability evaluation using deep convective clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 7009-7017(2016).

    [22] Sterckx S, Livens S, RayleighAdriaensen S.. deep convective clouds, and cross-sensor desert vicarious calibration validation for the PROBA-V mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 1437-1452(2013).

    [23] Gong X Y, Li Z L, Li J et al. Monitoring the VIIRS sensor data records reflective solar band calibrations using DCC with collocated CrIS measurements[J]. Journal of Geophysical Research: Atmospheres, 124, 8688-8706(2019).

    [24] Hu Y X, Wielicki B A, Yang P et al. Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly[J]. IEEE Transactions on Geoscience and Remote Sensing, 42, 2594-2599(2004).

    [25] Doelling D R, Morstad D, Scarino B R et al. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 1147-1159(2013).

    [26] Wang W H, Cao C Y, Shao X et al. Evaluation of 10-year NOAA/NASA Suomi NPP and NOAA-20 VIIRS reflective solar band (RSB) sensor data records (SDR) over deep convective clouds[J]. Remote Sensing, 14, 3566(2022).

    [27] Wang W H, Cao C Y. DCC radiometric sensitivity to spatial resolution, cluster size, and LWIR calibration bias based on VIIRS observations[J]. Journal of Atmospheric and Oceanic Technology, 32, 48-60(2015).

    [28] Sun L, Hu X Q, Guo M H et al. Multisite calibration tracking for FY-3A MERSI solar bands[J]. Advances in Meteorological Science and Technology, 3, 84-96(2013).

    [29] Yang M, Liu Z Y, Zhao Y G et al. On-orbit radiometric calibration method for satellites based on TOA reflectance at Baotou site[J]. Acta Optica Sinica, 41, 1828001(2021).

    [30] Zuo F H, Hu X Q, Wang X et al. Accuracy evaluation of positioning and calibration of HIRAS-II by FY-3E imager on the same platform[J]. Acta Optica Sinica, 42, 2430002(2022).

    [31] Bao S W, Chen H Y, Zhang L M et al. On-orbit radiometric calibration method of optical remote sensor in complex environment[J]. Acta Optica Sinica, 42, 0628001(2022).

    Tools

    Get Citation

    Copy Citation Text

    Bei Zhang, Xiuqing Hu, Weiwei Zhou, Ling Wang, Lin Chen, Peng Zhang. Radiometric Response Evaluation of FY-3D/MERSI-II Reflective Solar Bands Based on Deep Convective Cloud[J]. Acta Optica Sinica, 2023, 43(18): 1828003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 18, 2023

    Accepted: Jul. 18, 2023

    Published Online: Sep. 11, 2023

    The Author Email: Xiuqing Hu (huxq@cma.cn)

    DOI:10.3788/AOS230842

    Topics