Acta Optica Sinica, Volume. 38, Issue 7, 731001(2018)
Solar Cells with Surface Modified Cs-Doped ZnO Nanorod Array as Electron Transporting Layer
[1] [1] Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells[J]. Advanced Materials, 2007, 19(12): 1551-1566.
[2] [2] Dou L, You J, Hong Z, et al. 25th anniversary article: A decade of organic/polymeric photovoltaic research[J]. Advanced Materials, 2013, 25(46): 6642-6671.
[3] [3] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nature Photonics, 2012, 6(9): 591-595.
[4] [4] Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaic using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.
[5] [5] Li X, Wen S S, Yao R H, et al. Analysis of optical performance on polymer solar cell on transfer matrix method[J]. Acta Optica Sinica, 2012, 32(6): 0631002.
[6] [6] Yang S P, Zhao Y X, Han L J, et al. High-efficiency polymer soalr cells without optical spacer[J]. Acta Optica Sinica, 2012, 32(5): 0531001.
[7] [7] Xiao X, Xie S W, Zhang Z Y, et al. Confinent and trapping of light in organic solar cells[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050006.
[8] [8] Xiao X, Xu D F, Xiao Z G, et al. Study on enhancement effects of a grating electrode in organic solar cells[J]. Acta Optica Sinica, 2015, 35(s1): s116001.
[9] [9] White M S, Olson D C, Shaheen S E, et al. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer[J]. Applied Physics Letters, 2006, 89(14): 143517.
[10] [10] Yang T, Cai W, Qin D, et al. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6849-6853.
[11] [11] Olson D C, Piris J, Collins R T, et al. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites[J]. Thin Solid Films, 2006, 496(1): 26-29.
[12] [12] Ho P Y, Thiyagu S, Kao S H, et al. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells[J]. Nanoscale, 2013, 6(1): 466-71.
[13] [13] Guo M, Diao P, Cai S. Hydrothermal growth of well-aligned ZnO nanorodarrays: Dependence of morphology and alignment ordering upon preparing conditions[J]. Journal of Solid State Chemistry, 2005, 178(6): 1864-1873.
[14] [14] Hoppe H, Shokhovets S, Gobsch G. Inverse relation between photocurrent and absorption layer thickness in polymer solar cells[J]. Physica Status Solidi: Rapid Research Letters, 2010, 1(1): R40-R42.
[15] [15] Sabri N S, Yap C C, Yahaya M, et al. Solution-dispersed CuO nanoparticles as anode buffer layer in inverted type hybrid organic solar cells[J]. Physica Status Solidi:Applications and Materials Science, 2016, 214(1): 1600418.
[16] [16] Thitima R, Patcharee C, Takashi S, et al. Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells[J]. Solid-State Electronics, 2009, 53(2): 176-180.
[17] [17] Hames Y, Alpaslan Z, Kosemen A, et al. Electrochemically grown ZnO nanorods for hybrid solar cell applications[J]. Solar Energy, 2010, 84(3): 426-431.
[18] [18] Wang M, Li Y, Huang H, et al. Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices[J]. Applied Physics Letters, 2011, 98(10): 103305.
[19] [19] Das N C, Biswas S, Sokol P E. The photovoltaic performance of ZnO nanorods in bulk heterojunction solar cells[J]. Journal of Renewable & Sustainable Energy, 2011, 3(3): 15.
[20] [20] Bekci D R, Karsli A, Cakir A C, et al. Comparison of ZnO interlayers in inverted bulk heterojunction solar cells[J]. Applied Energy, 2012, 96(8): 417-421.
[21] [21] Tong F, Kim K, Martinez D, et al. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array[J]. Semiconductor Science & Technology, 2012, 27(10): 105005.
[22] [22] Gonzalez-Valls I, Angmo D, Gevorgyan S A, et al. Comparison of two types of vertically aligned ZnO NRs for highly efficient polymer solar cells[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(4): 272-280.
[23] [23] Ginting R T, Chi C Y, Yahaya M, et al. Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays[J]. Thin Solid Films, 2013, 536: 286-290.
[24] [24] Yuan Z, Fu M, Huang W. Air-stable inverted ZnO nanorod arrays/polymerhybrid solar cell[J].Synthetic Metals, 2013, 185/186: 133-136.
[25] [25] Sung Y M, Hsu F C, Chen Y F. Improved charge transport in inverted polymer solar cells using surface engineered ZnO-nanorod array as an electron transport layer[J]. Solar Energy Materials & Solar Cells, 2014, 125: 239-247.
[26] [26] Yun S, Lee J, Yang J, et al. Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate[J]. Physica B: Condensed Matter, 2010, 405(1): 413-419.
[27] [27] Yang J, Lee J, Im K. Influence of Sn-doping in hydrothermal methods on the optical property of the ZnO nanorods[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42(1): 51-56.
[28] [28] Wang H, Baek S, Song J, et al. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays[J]. Nanotechnology, 2008, 19(7): 075607.
[29] [29] Ishizumi A, Kanemitsu Y. Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method[J]. Applied Physics Letters, 2005, 6(25): 253106.
[30] [30] Fang T H, Kang S H. Preparation and characterization of Mg-doped ZnO nanorods[J]. Journal of Alloys & Compounds, 2010, 492(1/2): 536-542.
[31] [31] Chen C S, Liu T G, Lin L W, et al. Preparation and optical property of Mn-doped ZnO nanorods[J]. Advanced Materials Research, 2011, 189/190/191/192/193: 643-647.
[32] [32] Mirabbaszadeh K, Ahmadi M, Khosravi M, et al. Hydrothermal synthesis of vertically aligned cesium-doped ZnO nanorods for solar cell applications[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2013, 23(6): 1219-1225.
[33] [33] Fang T H, Kang S H. Optical and physical characteristics of In-doped ZnO nanorods[J]. Current Applied Physics, 2010, 10(4): 1076-1086.
[34] [34] Lin Y Y, Lee Y Y, Chang L, et al. The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells[J]. Applied Physics Letters, 2009, 94(6): 063308.
[35] [35] Lee B R, Jung E D, Nam Y S, et al. Amine-based polar solvent treatment for highly efficient inverted polymer solar cells[J]. Advanced Materials, 2014, 26(3): 494-500.
[36] [36] Sekine N, Chou C H, Kwan W L, et al. ZnO nano-ridge structure and its application in inverted polymer solar cell[J]. Organic Electronics, 2009, 10(8): 1473-1477.
[37] [37] Thangavel R, Moirangthem R S,Lee W S, et al. Cesium doped and undoped ZnO nanocrystalline thin films: A comparative study of structural and micro-Raman investigation of optical phonons[J]. Journal of Raman Spectroscopy, 2010, 41(12): 1304-1310.
[38] [38] Kim H P, Yusoff A R, Lee H J, et al. Effect of ZnO∶Cs2CO3 on the performance of organic photovoltaics[J]. Nanoscale Research Letters, 2014, 9(1): 323.
[39] [39] Cho K S, Lee E K, Joo W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nature Photonics, 2009, 3(6): 341-345.
[40] [40] Bo R L, Jung E D, Ji S P, et al. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer[J]. Nature Communications, 2014, 5: 4840.
[41] [41] Jang I, Kim J, Chang J P, et al. Study of ethanolamine surface treatment on the metal-oxide electron transport layer in inverted InP quantum dot light-emitting diodes[J]. Electronic Materials Letters, 2015, 11(6): 1066-1071.
[42] [42] Yip H L, Hau S K, Baek N S, et al. Polymer solar cells that use self-assembled-monolayer modified ZnO/metals as cathodes[J]. Advanced Materials, 2008, 20(12): 2376-2382.
[43] [43] Ye E H, Mi Y J, Park J, et al. Inverted type polymer solar cells with self-assembled monolayer treated ZnO[J]. Journal of Physical Chemistry C, 2013, 117(6): 2646-2652.
Get Citation
Copy Citation Text
Li Xue, Zhao Yuhan, Peng Hui, Zhang Jian, Li Chuannan, Wang Jin. Solar Cells with Surface Modified Cs-Doped ZnO Nanorod Array as Electron Transporting Layer[J]. Acta Optica Sinica, 2018, 38(7): 731001
Category: Thin Films
Received: Jan. 8, 2018
Accepted: --
Published Online: Jul. 16, 2018
The Author Email: Chuannan Li (licn@jlu.edu.cn)