Acta Photonica Sinica, Volume. 53, Issue 6, 0626001(2024)

Topological Oscillations and Asymmetric Edge States in One-dimensional Trimer Lattices

Jin ZHANG, Tao JIANG, Guoguo XIN*, Yu DANG, and Gaofeng WU
Author Affiliations
  • School of Physics, Northwest University, Xi′an710072, China
  • show less
    References(19)

    [1] OZAWA T, PRICE H M, AMO A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [2] ESMANN M, LAMBERTI F R, LEMAITRE A et al. Topological acoustics in coupled nanocavity arrays[J]. Physical Review B, 98, 161109(2018).

    [3] BLANCO-REDONDO A, ANDONEGUI I, COLLINS M J et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states[J]. Physical Review Letters, 116, 163901(2016).

    [4] DENG H, CHEN X, PANOIU N C et al. Topological surface plasmons in superlattices with changing sign of the average permittivity[J]. Optics Letters, 41, 4281-4284(2016).

    [5] He X T, LIANG E T, YUANJ J et al. A silicon-on-insulator slab for topological valley transport[J]. Nature Communications, 10, 872(2019).

    [6] EISENBERG H S, SILBERBERG Y, MORANDOTTI R et al. Diffraction management[J]. Physical Review Letters, 85, 1863(2000).

    [7] PERTSCH T, ZENTGRAF T, PESCHEL U et al. Anomalous refraction and diffraction in discrete optical systems[J]. Physical Review Letters, 88, 093901(2002).

    [8] LEDERER F, STEGEMAN G I, CHRISTODOULIDES D N et al. Discrete solitons in optics[J]. Physics Reports, 463, 1-126(2008).

    [9] CHENG Q, PAN Y, WANG Q et al. Topologically protected interface mode in plasmonic waveguide arrays[J]. Laser & Photonics Reviews, 9, 392-398(2015).

    [10] RECHTSMAN M C, ZEUNER J M, PLOTNIK Y et al. Photonic Floquet topological insulators[J]. Nature, 496, 196-200(2013).

    [11] LI C, YE F, CHEN X et al. Lieb polariton topological insulators[J]. Physical Review B, 97, 081103(2018).

    [12] ZHANG Y, REN B, LI Y et al. Topological states in the super-SSH model[J]. Optics Express, 29, 42827-42836(2021).

    [13] ANASTASIADIS A, STYLIARIS G, CHAUNSAIL R et al. Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model[J]. Physical Review B, 106, 085109(2022).

    [14] GUO H, CHEN S. Kaleidoscope of symmetry-protected topological phases in one-dimensional periodically modulated lattices[J]. Physical Review B, 91, 041402(2015).

    [15] SU W P, SCHRIEFFER J R. Fractionally charged excitations in charge-density-wave systems with commensurability 3[J]. Physical Review Letters, 46, 738(1981).

    [16] ALVAREZ V M M, COUTINHO-FILHO M D. Edge states in trimer lattices[J]. Physical Review A, 99, 013833(2019).

    [17] CHEN Z G, TANG W, ZHANG R Y et al. Landau-Zener transition in the dynamic transfer of acoustic topological states[J]. Physical Review Letters, 126, 054301(2021).

    [18] XU B C, XIE B Y, XU L H et al. Topological Landau-Zener nanophotonic circuits[J]. Advanced Photonics, 5, 036005(2023).

    [19] YAN W, CHENG W, LIU W et al. Topological edge states in photonic decorated trimer lattices[J]. Optics Letters, 48, 1802-1805(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jin ZHANG, Tao JIANG, Guoguo XIN, Yu DANG, Gaofeng WU. Topological Oscillations and Asymmetric Edge States in One-dimensional Trimer Lattices[J]. Acta Photonica Sinica, 2024, 53(6): 0626001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 27, 2023

    Accepted: Jan. 15, 2024

    Published Online: Jul. 16, 2024

    The Author Email: Guoguo XIN (xinguo@nwu.edu.cn)

    DOI:10.3788/gzxb20245306.0626001

    Topics