Chinese Optics, Volume. 18, Issue 3, 487(2025)
Improved RANSAC hypothesis evaluation metrics for point cloud registration
Fig. 4. Partial point cloud visualization of the experimental datasets. (a) U3M dataset; (b) BoD5 dataset; (c) BMR dataset
Fig. 5. The robustness of the metrics to parameter
Fig. 6. The robustness of the metrics to parameter
Fig. 7. The robustness of the metrics to parameter when varying the number of RANSAC iterations. (a) 600 iters; (b) 800 iters; (c)
Fig. 8. The robustness of the metrics to parameter when varying RMSE thresholds . (a) ; (b) ; (c) ; (d) 改变RMSE阈值时不同假设度量对参数的鲁棒性。(a) ; (b) ; (c) ; (d)
Fig. 9. Comparison between the metrics considered with and without the parameter (w:with,wo:without)参数的引入与否对不同假设度量的影响
Fig. 10. The impact of the size of the initial correspondence set on different hypothesis evaluations初始对应点集的大小对不同假设度量的影响
|
|
Get Citation
Copy Citation Text
Si-hao YU, Shao-yan GAI, Fei-peng DA. Improved RANSAC hypothesis evaluation metrics for point cloud registration[J]. Chinese Optics, 2025, 18(3): 487
Category:
Received: Nov. 15, 2024
Accepted: Dec. 24, 2024
Published Online: Jun. 16, 2025
The Author Email: