Chinese Optics, Volume. 18, Issue 3, 487(2025)

Improved RANSAC hypothesis evaluation metrics for point cloud registration

Si-hao YU, Shao-yan GAI*, and Fei-peng DA
Author Affiliations
  • College of Automation, Southeast University, Nanjing 210096, China
  • show less
    Figures & Tables(12)
    Flow chart of RANSAC
    Five typical examples of RANSAC hypothesis evaluation
    Flow chart of triangle voting
    Partial point cloud visualization of the experimental datasets. (a) U3M dataset; (b) BoD5 dataset; (c) BMR dataset
    The robustness of the metrics to parameter t in different datasets. (a) U3M dataset; (b) BoD5 dataset; (c) BMR dataset改变数据集时不同假设度量对参数的鲁棒性。(a) U3M数据集;(b) BoD5数据集;(c) BMR数据集
    The robustness of the metrics to parameter t at low thresholds in different datasets. (a) U3M dataset; (b) BoD5 dataset; (c) BMR dataset不同数据集下不同假设度量在低阈值时对参数的鲁棒性。(a) U3M数据集;(b) BoD5数据集;(c) BMR数据集
    The robustness of the metrics to parameter when varying the number of RANSAC iterations. (a) 600 iters; (b) 800 iters; (c) 1000 iters不同RANSAC迭代次数时不同假设评估度量对参数的鲁棒性。(a) 600次迭代;(b) 800次迭代;(c) 1000次迭代
    The robustness of the metrics to parameter when varying RMSE thresholds . (a) ; (b) ; (c) ; (d) 改变RMSE阈值时不同假设度量对参数的鲁棒性。(a) ; (b) ; (c) ; (d)
    Comparison between the metrics considered with and without the parameter (w:with,wo:without)参数的引入与否对不同假设度量的影响
    The impact of the size of the initial correspondence set on different hypothesis evaluations初始对应点集的大小对不同假设度量的影响
    • Table 1. Properties of experimental datasets

      View table
      View in Article

      Table 1. Properties of experimental datasets

      数据集干扰条件数据模态应用场景
      U3M自遮挡、有限重叠LiDAR配准
      BoD5遮挡、孔洞、噪声Kinect目标识别
      BMR自遮挡、有限重叠、孔洞、噪声Kinect配准
    • Table 2. The average time consumption of RANSAC estimators with different hypothesis evaluation metrics for filtering point cloud registration hypotheses in different datasets (Unit:ms)

      View table
      View in Article

      Table 2. The average time consumption of RANSAC estimators with different hypothesis evaluation metrics for filtering point cloud registration hypotheses in different datasets (Unit:ms)

      假设度量U3MBoD5BMR平均时间提升
      MAE3755.54845.87955.293.85%
      super_MAE3616.54801.45920.35
      MSE3848.48866.12967.823.85%
      super_MSE3655.23820.00921.72
      LOG-COSH3890.83877.981015.796.73%
      super_LOG-COSH3723.58809.63933.32
      EXP4084.22913.051057.9710.79%
      super_EXP3779.09817.13905.55
      Quantile3990.10877.221058.017.32%
      super_Quantile3727.21865.53909.54
      -Quantile4058.26913.141003.275.85%
      super_-Quantile3785.36886.88923.48
      inlier_count3600.43830.08892.942.10%
      super_inlier3584.74785.23888.72
      HP3855.69845.95970.221.67%
      super_HP3817.90840.45937.29
      OP1840270.00445224.00145848.00
      PC_Dist1814150.00438667.00146138.00
    Tools

    Get Citation

    Copy Citation Text

    Si-hao YU, Shao-yan GAI, Fei-peng DA. Improved RANSAC hypothesis evaluation metrics for point cloud registration[J]. Chinese Optics, 2025, 18(3): 487

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 15, 2024

    Accepted: Dec. 24, 2024

    Published Online: Jun. 16, 2025

    The Author Email:

    DOI:10.37188/CO.2024-0208

    Topics