Molecular Plant, Volume. 18, Issue 8, 1270(2025)
Targeted protein and protein-condensate degradation in plant science research and crop breeding
[1] [1] Adams, E.H.G., and Spoel, S.H.(2018). The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. J. Exp. Bot.69:4529-4537.
[2] [2] Aniento, F., Snchez de Medina Hernndez, V., Dagdas, Y., Rojas-Pierce, M., and Russinova, E.(2021). Molecular mechanisms of endomembrane trafficking in plants. Plant Cell34:146-173.
[3] [3] Banik, S.M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N.M., and Bertozzi, C.R.(2020). Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature584:291-297.
[4] [4] Banushi, B., Joseph, S.R., Lum, B., Lee, J.J., and Simpson, F.(2023). Endocytosis in cancer and cancer therapy. Nat. Rev. Cancer23:450-473.
[5] [5] Bard, J.A.M., Goodall, E.A., Greene, E.R., Jonsson, E., Dong, K.C., and Martin, A.(2018). Structure and function of the 26s proteasome. Subcell. Biochem.87:697-724.
[6] [6] Bashore, C., Prakash, S., Johnson, M.C., Conrad, R.J., Kekessie, I.A., Scales, S.J., Ishisoko, N., Kleinheinz, T., Liu, P.S., Popovych, N., et al.(2023). Targeted degradation via direct 26S proteasome recruitment. Nat. Chem. Biol.19:55-63.
[7] [7] Baudisch, B., Pfort, I., Sorge, E., and Conrad, U.(2018). Nanobody-directed specific degradation of proteins by the 26s-proteasome in plants. Front. Plant Sci.9:130.
[8] [8] Baulcombe, D.C., and Dean, C.(2014). Epigenetic regulation in plant responses to the environment. Cold Spring Harb. Perspect. Biol.6: a019471.
[9] [9] Bks, M., Langley, D.R., and Crews, C.M.(2022). PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov.21:181-200.
[10] [10] Benn, J., Cheng, S., Keeling, S., Smith, A.E., Vaysburd, M.J., Bken, D., Miller, L.V.C., Katsinelos, T., Franco, C., Dupr, E., et al.(2024). Aggregate-selective removal of pathological tau by clustering-activated degraders. Science385:1009-1016.
[11] [11] Buckley, D.L., Raina, K., Darricarrere, N., Hines, J., Gustafson, J.L., Smith, I.E., Miah, A.H., Harling, J.D., and Crews, C.M.(2015). HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem. Biol.10:1831-1837.
[12] [12] Caussinus, E., Kanca, O., and Affolter, M.(2011). Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol.19:117-121.
[13] [13] Chan, A., Haley, R.M., Najar, M.A., Gonzalez-Martinez, D., Bugaj, L.J., Burslem, G.M., Mitchell, M.J., and Tsourkas, A.(2024). Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins. Nat. Commun.15:5808.
[14] [14] Chen, L., and Hellmann, H.(2013). Plant E3 ligases: flexible enzymes in a sessile world. Mol. Plant6:1388-1404.
[15] [15] Clift, D., McEwan, W.A., Labzin, L.I., Konieczny, V., Mogessie, B., James, L.C., and Schuh, M.(2017). A method for the acute and rapid degradation of endogenous proteins. Cell171:1692-1706.e18.
[16] [16] Colas, P., Cohen, B., Ko Ferrigno, P., Silver, P.A., and Brent, R.(2000). Targeted modification and transportation of cellular proteins. Proc. Natl. Acad. Sci. USA97:13720-13725.
[17] [17] Crisp, P.A., Bhatnagar-Mathur, P., Hundleby, P., Godwin, I.D., Waterhouse, P.M., and Hickey, L.T.(2022). Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Curr. Opin. Biotechnol.73:88-94.
[18] [18] Cuevas-Velazquez, C.L., and Dinneny, J.R.(2018). Organization out of disorder: liquid-liquid phase separation in plants. Curr. Opin. Plant Biol.45:68-74.
[19] [19] Dejonghe, W., and Russinova, E.(2017). Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol.174:5-20.
[20] [20] Dharmasiri, N., Dharmasiri, S., and Estelle, M.(2005). The F-box protein TIR1 is an auxin receptor. Nature435:441-445.
[21] [21] Dikic, I.(2017). Proteasomal and autophagic degradation systems. Annu. Rev. Biochem.86:193-224.
[22] [22] Dissmeyer, N.(2019). Conditional protein function via N-degron pathway-mediated proteostasis in stress physiology. Annu. Rev. Plant Biol.70:83-117.
[23] [23] Eckardt, N.A., Avin-Wittenberg, T., Bassham, D.C., Chen, P., Chen, Q., Fang, J., Genschik, P., Ghifari, A.S., Guercio, A.M., Gibbs, D.J., et al.(2024). The lowdown on breakdown: Open questions in plant proteolysis. Plant Cell36:2931-2975.
[24] [24] Faden, F., Ramezani, T., Mielke, S., Almudi, I., Nairz, K., Froehlich, M.S., Hckendorff, J., Brandt, W., Hoehenwarter, W., Dohmen, R.J., et al.(2016). Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nat. Commun.7:12202.
[25] [25] Fletcher, A., Clift, D., de Vries, E., Martinez Cuesta, S., Malcolm, T., Meghini, F., Chaerkady, R., Wang, J., Chiang, A., Weng, S.H.S., et al.(2023). A TRIM21-based bioPROTAC highlights the therapeutic benefit of HuR degradation. Nat. Commun.14:7093.
[26] [26] Fu, Y., Chen, N., Wang, Z., Luo, S., Ding, Y., and Lu, B.(2021). Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res.31:965-979.
[27] [27] Garcia-Cabau, C., and Salvatella, X.(2021). Regulation of biomolecular condensate dynamics by signaling. Curr. Opin. Cell Biol.69:111-119.
[28] [28] Gatica, D., Lahiri, V., and Klionsky, D.J.(2018). Cargo recognition and degradation by selective autophagy. Nat. Cell Biol.20:233-242.
[29] [29] Ghre, V., Spallek, T., Hweker, H., Mersmann, S., Mentzel, T., Boller, T., de Torres, M., Mansfield, J.W., and Robatzek, S.(2008). Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase avrpTob. Curr. Biol.18:1824-1832.
[30] [30] Gross, A.S., Raffeiner, M., Zeng, Y., stn, S., and Dagdas, Y.(2025). Autophagy in plant health and disease. Annu. Rev. Plant Biol.76:197-227.
[31] [31] Han, T., Goralski, M., Gaskill, N., Capota, E., Kim, J., Ting, T.C., Xie, Y., Williams, N.S., and Nijhawan, D.(2017). Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science356:eaal3755.
[32] [32] Hantschel, O., Biancalana, M., and Koide, S.(2020). Monobodies as enabling tools for structural and mechanistic biology. Curr. Opin. Struct. Biol.60:167-174.
[33] [33] Hatzianestis, I.H., Mountourakis, F., Stavridou, S., and Moschou, P.N.(2023). Plant condensates: no longer membrane-less? Trends Plant Sci.28:1101-1112.
[34] [34] Hollingsworth, S., Johnson, S., Khakbaz, P., Meng, Y., Mouchlis, V., Pierce, O., Prytkova, V., Vik, E., Weiss, D., and Shanmugasundaram, V.(2023). The rise of targeting chimeras(TACs): next-generation medicines that preempt cellular events. Med. Chem. Res.32:1294-1314.
[35] [35] Hua, Z., and Vierstra, R.D.(2011). The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol.62:299-334.
[36] [36] Huang, L., and Rojas-Pierce, M.(2024). Rapid depletion of target proteins in plants by an inducible protein degradation system. Plant Cell36:3145-3161.
[37] [37] Huang, W., MacLean, A.M., Sugio, A., Maqbool, A., Busscher, M., Cho, S.-T., Kamoun, S., Kuo, C.-H., Immink, R.G.H., and Hogenhout, S.A.(2021). Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell184:5201-5214.e12.
[38] [38] Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y., and Handa, H.(2010). Identification of a primary target of thalidomide teratogenicity. Science327:1345-1350.
[39] [39] Ji, C.H., Kim, H.Y., Lee, M.J., Heo, A.J., Park, D.Y., Lim, S., Shin, S., Ganipisetti, S., Yang, W.S., Jung, C.A., et al.(2022). The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat. Commun.13:904.
[40] [40] Kelley, D.R.(2018). E3 ubiquitin ligases: key regulators of hormone signaling in plants. Mol. Cell. Proteomics17:1047-1054.
[41] [41] Kepinski, S., and Leyser, O.(2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature435:446-451.
[42] [42] Kirkin, V.(2020). History of the selective autophagy research: how did it begin and where does it stand today? J. Mol. Biol.432:3-27.
[43] [43] Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., and Kamoun, S.(2023). NLR immune receptor-nanobody fusions confer plant disease resistance. Science379:934-939.
[44] [44] Kraus, M., Pleskot, R., and Van Damme, D.(2024). Structural and evolutionary aspects of plant endocytosis. Annu. Rev. Plant Biol.75:521-550.
[45] [45] Krnke, J., Fink, E.C., Hollenbach, P.W., MacBeth, K.J., Hurst, S.N., Udeshi, N.D., Chamberlain, P.P., Mani, D.R., Man, H.W., Gandhi, A.K., et al.(2015). Lenalidomide induces ubiquitination and degradation of CK1 in del(5q) MDS. Nature523:183-188.
[46] [46] Krnke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., Svinkina, T., Heckl, D., Comer, E., Li, X., et al.(2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science343:301-305.
[47] [47] Lamark, T., and Johansen, T.(2021). Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol.37:143-169.
[48] [48] Lamark, T., Perander, M., Outzen, H., Kristiansen, K., vervatn, A., Michaelsen, E., Bjrky, G., and Johansen, T.(2003). Interaction codes within the family of mammalian phox and bem1p domain-containing proteins. J. Biol. Chem.278:34568-34581.
[49] [49] Li, L., Liu, J., and Zhou, J.-M.(2024). From molecule to cell: the expanding frontiers of plant immunity. J. Genet. Genomics51:680-690.
[50] [50] Li, Z., and Nakatogawa, H.(2022). Degradation of nuclear components via different autophagy pathways. Trends Cell Biol.32:574-584.
[51] [51] Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T., Ma, L., Gao, C., Yang, Y., Sun, Y., et al.(2019). Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature575:203-209.
[52] [52] Lim, S., Khoo, R., Juang, Y.-C., Gopal, P., Zhang, H., Yeo, C., Peh, K.M., Teo, J., Ng, S., Henry, B., and Partridge, A.W.(2021). Exquisitely specific anti-kras biodegraders inform on the cellular prevalence of nucleotide-loaded states. ACS Cent. Sci.7:274-291.
[53] [53] Lim, S., Khoo, R., Peh, K.M., Teo, J., Chang, S.C., Ng, S., Beilhartz, G.L., Melnyk, R.A., Johannes, C.W., Brown, C.J., et al.(2020). bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc. Natl. Acad. Sci. USA117:5791-5800.
[54] [54] Liu, G., Lin, Q., Jin, S., and Gao, C.(2022). The CRISPR-Cas toolbox and gene editing technologies. Mol. Cell82:333-347.
[55] [55] Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., et al.(2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol.14:177-185.
[56] [56] Liu, Q., Maqbool, A., Mirkin, F.G., Singh, Y., Stevenson, C.E.M., Lawson, D.M., Kamoun, S., Huang, W., and Hogenhout, S.A.(2023). Bimodular architecture of bacterial effector SAP05 that drives ubiquitin-independent targeted protein degradation. Proc. Natl. Acad. Sci. USA120:e2310664120.
[57] [57] Liu, Y., and Bassham, D.C.(2012). Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol.63:215-237.
[58] [58] Liu, Y., Jackson, E., Liu, X., Huang, X., van der Hoorn, R.A.L., Zhang, Y., and Li, X.(2024). Proteolysis in plant immunity. Plant Cell36:3099-3115.
[59] [59] Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Learish, R., Ohana, R.F., Urh, M., et al.(2008). HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol.3:373-382.
[60] [60] Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T.P., He, P., and Shan, L.(2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science332:1439-1442.
[61] [61] Lu, G., Middleton, R.E., Sun, H., Naniong, M., Ott, C.J., Mitsiades, C.S., Wong, K.-K., Bradner, J.E., and Kaelin, W.G.(2014). The myeloma drug lenalidomide promotes the cereblon-dependent destruction of ikaros proteins. Science343:305-309.
[62] [62] Luo, M., Zhu, S., Dang, H., Wen, Q., Niu, R., Long, J., Wang, Z., Tong, Y., Ning, Y., Yuan, M., and Xu, G.(2025). Genetically-encoded targeted protein degradation technology to remove endogenous condensation-prone proteins and improve crop performance. Nat. Commun.16:1159.
[63] [63] Luo, N., Shang, D., Tang, Z., Mai, J., Huang, X., Tao, L.-Z., Liu, L., Gao, C., Qian, Y., Xie, Q., and Li, F.(2023). Engineered ATG8-binding motif-based selective autophagy to degrade proteins and organelles in planta. New Phytol.237:684-697.
[64] [64] Ma, Y., Miotk, A., Sutikovi, Z., Ermakova, O., Wenzl, C., Medzihradszky, A., Gaillochet, C., Forner, J., Utan, G., Brackmann, K., et al.(2019). WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nat. Commun.10:5093.
[65] [65] Marshall, R.S., and Vierstra, R.D.(2018). Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol.69:173-208.
[66] [66] Maruri-Lopez, I., and Chodasiewicz, M.(2023). Involvement of small molecules and metabolites in regulation of biomolecular condensate properties. Curr. Opin. Plant Biol.74:102385.
[67] [67] Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M., and Nukina, N.(2011). Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell44:279-289.
[68] [68] Matyskiela, M.E., Couto, S., Zheng, X., Lu, G., Hui, J., Stamp, K., Drew, C., Ren, Y., Wang, M., Carpenter, A., et al.(2018). SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol.14:981-987.
[69] [69] Millar, A.H., Heazlewood, J.L., Giglione, C., Holdsworth, M.J., Bachmair, A., and Schulze, W.X.(2019). The scope, functions, and dynamics of posttranslational protein modifications. Annu. Rev. Plant Biol.70:119-151.
[70] [70] Miller, L.V.C., Papa, G., Vaysburd, M., Cheng, S., Sweeney, P.W., Smith, A., Franco, C., Katsinelos, T., Huang, M., Sanford, S.A.I., et al.(2024). Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function. Cell187:5967-5980.e17.
[71] [71] Min, J.-H., Yang, H., Ivan, M., Gertler, F., Kaelin, W.G., and Pavletich, N.P.(2002). Structure of an HIF-1-pVHL complex: hydroxyproline recognition in signaling. Science296:1886-1889.
[72] [72] Morreale, F.E., Kleine, S., Leodolter, J., Junker, S., Hoi, D.M., Ovchinnikov, S., Okun, A., Kley, J., Kurzbauer, R., Junk, L., et al.(2022). BacPROTACs mediate targeted protein degradation in bacteria. Cell185:2338-2353.e18.
[73] [73] Mou, R., Niu, R., Yang, R., and Xu, G.(2025). Engineering crop performance with upstream open reading frames. Trends Plant Sci.30:311-323.
[74] [74] Muyldermans, S.(2013). Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem.82:775-797.
[75] [75] Natsume, T., and Kanemaki, M.T.(2017). Conditional degrons for controlling protein expression at the protein level. Annu. Rev. Genet.51:83-102.
[76] [76] Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., Raina, K., Holley, S.A., and Crews, C.M.(2011). Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol.7:538-543.
[77] [77] Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and Kanemaki, M.(2009). An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods6:917-922.
[78] [78] Paez Valencia, J., Goodman, K., and Otegui, M.S.(2016). Endocytosis and endosomal trafficking in plants. Annu. Rev. Plant Biol.67:309-335.
[79] [79] Peng, J., Yu, Y., and Fang, X.(2025). Stress sensing and response through biomolecular condensates in plants. Plant Commun.6:101225.
[80] [80] Raffeiner, M., Zhu, S., Gonzlez-Fuente, M., and stn, S.(2023). Interplay between autophagy and proteasome during protein turnover. Trends Plant Sci.28:698-714.
[81] [81] Rennick, J.J., Johnston, A.P.R., and Parton, R.G.(2021). Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol.16:266-276.
[82] [82] Robatzek, S., Chinchilla, D., and Boller, T.(2006). Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev.20:537-542.
[83] [83] Roberts, C.G., Franklin, T.G., and Pruneda, J.N.(2023). Ubiquitintargeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J.42:e114318.
[84] [84] Rosa, C., Kuo, Y.-W., Wuriyanghan, H., and Falk, B.W.(2018). RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol.56:581-610.
[85] [85] Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and Deshaies, R.J.(2001). Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA98:8554-8559.
[86] [86] Schmitz, R.J., Grotewold, E., and Stam, M.(2022). Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell34:718-741.
[87] [87] Shabek, N., and Zheng, N.(2014). Plant ubiquitin ligases as signaling hubs. Nat. Struct. Mol. Biol.21:293-296.
[88] [88] Shimada, T., Takagi, J., Ichino, T., Shirakawa, M., and Hara-Nishimura, I.(2018). Plant vacuoles. Annu. Rev. Plant Biol.69:123-145.
[89] [89] Solis-Miranda, J., Chodasiewicz, M., Skirycz, A., Fernie, A.R., Moschou, P.N., Bozhkov, P.V., and Gutierrez-Beltran, E.(2023). Stress-related biomolecular condensates in plants. Plant Cell35:3187-3204.
[90] [90] Sorge, E., Demidov, D., Lermontova, I., Houben, A., and Conrad, U.(2021). Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants. PLoS One16:e0247015.
[91] [91] Stephani, M., and Dagdas, Y.(2020). Plant selective autophagy—still an uncharted territory with a lot of hidden gems. J. Mol. Biol.432:63-79.
[92] [92] Su, L., Li, A., Li, H., Chu, C., and Qiu, J.-L.(2013). Direct modulation of protein level in arabidopsis. Mol. Plant6:1711-1714.
[93] [93] Su, Y., Ngea, G.L.N., Wang, K., Lu, Y., Godana, E.A., Ackah, M., Yang, Q., and Zhang, H.(2024). Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. Plant Biotechnol. J.22:2811-2843.
[94] [94] Sun, D., Wu, R., Zheng, J., Li, P., and Yu, L.(2018). Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res.28:405-415.
[95] [95] Tae, H.S., Sundberg, T.B., Neklesa, T.K., Noblin, D.J., Gustafson, J.L., Roth, A.G., Raina, K., and Crews, C.M.(2012). Identification of hydrophobic tags for the degradation of stabilized proteins. Chembiochem13:538-541.
[96] [96] Takahashi, D., Moriyama, J., Nakamura, T., Miki, E., Takahashi, E., Sato, A., Akaike, T., Itto-Nakama, K., and Arimoto, H.(2019). AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell76:797-810.e10.
[97] [97] Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N.(2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature446:640-645.
[98] [98] Tang, Z., Shi, S., Niu, R., Zhou, Y., Wang, Z., Fu, R., Mou, R., Chen, S., Ding, P., and Xu, G.(2024). Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe32:1552-1565.e8.
[99] [99] Taylor, J.D., Barrett, N., Martinez Cuesta, S., Cassidy, K., Pachl, F., Dodgson, J., Patel, R., Eriksson, T.M., Riley, A., Burrell, M., et al.(2024). Targeted protein degradation using chimeric human E2 ubiquitin-conjugating enzymes. Commun. Biol.7:1179.
[100] [100] Teng, K.W., Tsai, S.T., Hattori, T., Fedele, C., Koide, A., Yang, C., Hou, X., Zhang, Y., Neel, B.G., O'Bryan, J.P., and Koide, S.(2021). Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat. Commun.12:2656.
[101] [101] Tian, J., Tang, Z., Niu, R., Zhou, Y., Yang, D., Chen, D., Luo, M., Mou, R., Yuan, M., and Xu, G.(2024). Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. Sci. China Life Sci.67:1715-1726.
[102] [102] Tsai, J.M., Nowak, R.P., Ebert, B.L., and Fischer, E.S.(2024). Targeted protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol.25:740-757.
[103] [103] Tuncel, A., Pan, C., Clem, J.S., Liu, D., and Qi, Y.(2025). CRISPR-Cas applications in agriculture and plant research. Nat. Rev. Mol. Cell Biol.26:419-441.
[104] [104] Uhln, M., Fagerberg, L., Hallstrm, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, ., Kampf, C., Sjstedt, E., Asplund, A., et al.(2015). Proteomics. Tissue-based map of the human proteome. Science347:1260419.
[105] [105] Vargas, J.N.S., Wang, C., Bunker, E., Hao, L., Maric, D., Schiavo, G., Randow, F., and Youle, R.J.(2019). Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol. Cell74:347-362.e6.
[106] [106] Wang, J., Mylle, E., Johnson, A., Besbrugge, N., De Jaeger, G., Friml, J., Pleskot, R., and Van Damme, D.(2020). High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits1. Plant Physiol.183:986-997.
[107] [107] Wang, R., You, X., Zhang, C., Fang, H., Wang, M., Zhang, F., Kang, H., Xu, X., Liu, Z., Wang, J., et al.(2022). An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol.23:154.
[108] [108] Wells, J.A., and Kumru, K.(2024). Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov.23:126-140.
[109] [109] Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al.(2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science333:228-233.
[110] [110] Wu, T., Yoon, H., Xiong, Y., Dixon-Clarke, S.E., Nowak, R.P., and Fischer, E.S.(2020). Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol.27:605-614.
[111] [111] Wurzer, B., Zaffagnini, G., Fracchiolla, D., Turco, E., Abert, C., Romanov, J., and Martens, S.(2015). Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. eLife4:e08941.
[112] [112] Xiang, Y., and Dong, X.(2025). Translational Regulation of Plant Stress Responses: Mechanisms, Pathways, and Applications in Bioengineering. Annu. Rev. Phytopathol.63.
[113] [113] Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X.(2017). uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature545:491-494.
[114] [114] Yang, F., Kimberlin, A.N., Elowsky, C.G., Liu, Y., Gonzalez-Solis, A., Cahoon, E.B., and Alfano, J.R.(2019). A plant immune receptor degraded by selective autophagy. Mol. Plant12:113-123.
[115] [115] Yang, L., Zhang, P., Wang, Y., Hu, G., Guo, W., Gu, X., and Pu, L.(2022). Plant synthetic epigenomic engineering for crop improvement. Sci. China Life Sci.65:2191-2204.
[116] [116] Yang, M., Ismayil, A., and Liu, Y.(2020). Autophagy in plant-virus interactions. Annu. Rev. Virol.7:403-419.
[117] [117] Yesbolatova, A., Saito, Y., Kitamoto, N., Makino-Itou, H., Ajima, R., Nakano, R., Nakaoka, H., Fukui, K., Gamo, K., Tominari, Y., et al.(2020). The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun.11:5701.
[118] [118] Yuan, S., Zhou, G., and Xu, G.(2024). Translation machinery: the basis of translational control. J Genet Genomics51:367-378.
[119] [119] Zeng, J., Santos, A.F., Mukadam, A.S., Osswald, M., Jacques, D.A., Dickson, C.F., McLaughlin, S.H., Johnson, C.M., Kiss, L., Luptak, J., et al.(2021). Target-induced clustering activates Trim-Away of pathogens and proteins. Nat. Struct. Mol. Biol.28:278-289.
[120] [120] Zhang, H., and Zhu, J.-K.(2025). Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat. Rev. Mol. Cell Biol.26:51-67.
[121] [121] Zhang, D., Duque-Jimenez, J., Facchinetti, F., et al.(2025). Transferrin receptor targeting chimeras for membrane protein degradation. Nature638:787-795.
[122] [122] Zhang, J., Yin, K., Sun, J., Gao, J., Du, Q., Li, H., and Qiu, J.-L.(2018). Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. Plant Biotechnol. J.16:472-481.
[123] [123] Zhang, J., Zheng, N., and Zhou, P.(2003). Exploring the functional complexity of cellular proteins by protein knockout. Proc. Natl. Acad. Sci. USA100:14127-14132.
[124] [124] Zhong, G., Chang, X., Xie, W., and Zhou, X.(2024). Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct. Target. Ther.9:308.
[125] [125] Zhong, V., Archibald, B.N., and Brophy, J.A.N.(2023). Transcriptional and post-transcriptional controls for tuning gene expression in plants. Curr. Opin. Plant Biol.71:102315.
[126] [126] Zhou, P., Bogacki, R., McReynolds, L., and Howley, P.M.(2000). Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell6:751-756.
[127] [127] Zhou, Y., Niu, R., Tang, Z., Mou, R., Wang, Z., Zhu, S., Yang, H., Ding, P., and Xu, G.(2023). Plant HEM1 specifies a condensation domain to control immune gene translation. Nat. Plants9:289-301.
Get Citation
Copy Citation Text
Niu Ruixia, Luo Ming, Wen Qing, Xiong Yifan, Dang Hua, Xu Guoyong. Targeted protein and protein-condensate degradation in plant science research and crop breeding[J]. Molecular Plant, 2025, 18(8): 1270
Category:
Received: Apr. 28, 2025
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: