Acta Optica Sinica, Volume. 41, Issue 9, 0901001(2021)
Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar
Fig. 1. Location and layout of wake vortex observation. (a) MNA; (b) CSIA(landing stage); (c) CSIA(take-off stage)
Fig. 2. Flow chart of dynamic matching of PCDL scan fragments and flight information
Fig. 3. Principle diagram of wake vortex identification with radial velocity method
Fig. 4. Principle diagrams of wake vortex identification with spectral width method. (a) Distribution of spectrum intensity; (b) schematic of spectrum width calculation
Fig. 5. Examples of wake vortex identification by PCDL with different methods (Type A333, 20180910T001839). (a) Radial velocity method; (b) spectral width method
Fig. 6. Bimodal distributions of radial velocity and spectrum width (Type A320, 20180910T000220)
Fig. 7. Identification of vortex core horizontal position based on Dspeed,Dwidth and DR. (a)(b) 20180910T000138; (c)(d) 20180910T210542; (e)(f) 20180910T155221
Fig. 8. Radial velocity versus elevation angle (Type A333, 20180910T111901). (a) Left vortex core; (b) right vortex core
Fig. 10. Theoretical and measured distributions of tangential velocity. (a) Theoretical distributions of tangential velocity and initial circulation[37]; (b) distribution of tangential velocity measured by PCDL (Type A333, 20180827T153828)
Fig. 11. Comparison of retrieved circulation and B-H model fitting (Type A333, 20181015T081139). (a) Left vortex core; (b) right vortex core
Fig. 12. Radial velocity based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235035; (f) 20180907T235021; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
Fig. 13. Spectral width based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235021; (f) 20180907T235035; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
Fig. 14. Evolution of wake vortex core position and circulation of airbus A333(20180907T2349). (a) Vortex core position; (b) circulation
Fig. 15. Radial velocity based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324; (h) 20180907T190338
Fig. 16. Spectral width based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324;(h) 20180907T190338
Fig. 17. Evolution of wake vortex core position and circulation of airbus B763 (20180907T1902). (a) Wake vortex core position; (b) circulation
Fig. 18. Radial velocity based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
Fig. 19. Spectral width based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
Fig. 20. Evolution of wake vortex core position and circulation of airbus A320 (20180907T0419). (a) Wake vortex core position; (b) circulation
Fig. 21. Radial velocity and spectral width based on wake vortex evolution of airbus CRJ9. (a) 20180907T154531; (b) 20180907T154545; (c) 20180907T154559; (d) 20180907T154531; (e) 20180907T154545; (f) 20180907T154559
|
|
|
|
Get Citation
Copy Citation Text
Xiaoye Wang, Songhua Wu, Xiaoying Liu, Jiaping Yin, Weijun Pan, Xuan Wang. Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar[J]. Acta Optica Sinica, 2021, 41(9): 0901001
Category: Atmospheric Optics and Oceanic Optics
Received: Nov. 2, 2020
Accepted: Dec. 2, 2020
Published Online: May. 8, 2021
The Author Email: Wu Songhua (wush@ouc.edu.cn)