Acta Photonica Sinica, Volume. 51, Issue 10, 1019003(2022)
Numerical Study of Broadband Wavelength Conversion Based on InP/In1-xGaxAsyP1-y Strip-loaded Waveguide
[1] MA Ming, CHEN L R. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing[J]. APL Photonics, 1, 086104(2016).
[2] GUAN Lei, WANG Zhouran, YUAN Guohui et al. Characteritics of all-optical wavelength conversion based on quantum-dot semiconductor optical amplifier[J]. Acta Photonica Sinica, 45, 1113002(2016).
[3] HENDRICKSON S M, FOSTER A C, CAMACHO R M et al. Integrated nonlinear photonics: emerging applications and ongoing challenges[J]. Journal of the Optical Society of America B, 31, 3193-3203(2014).
[4] ZHOU Zhiping, YIN Bing, MICHEL J. On-chip light sources for silicon photonics[J]. Light: Science & Applications, 4, e358(2015).
[5] PU M, OTTAVIANO L, SEMENOVA E et al. Efficient frequency comb generation in AlGaAs-on-insulator[J]. Optica, 3, 823-826(2016).
[6] LAMONT M R E, LUTHER-DAVIES B, CHOI D Y et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 W-1m-1) As2S3 chalcogenide planar waveguide[J]. Optics Express, 16, 14938-14944(2008).
[7] TATEBAYASHI J, KAKO S, HO J et al. Room-temperature lasing in a single nanowire with quantum dots[J]. Nature Photonics, 9, 501-505(2015).
[8] LIANG Di, BOWERS J E. Recent progress in lasers on silicon[J]. Nature photonics, 4, 511-517(2010).
[9] CHEN R, TRAN T T D, NG K W et al. Nanolasers grown on silicon[J]. Nature Photonics, 5, 170-175(2011).
[10] LUAN F, PELUSI M D, LAMONT M R E et al. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals[J]. Optics Express, 17, 3514-3520(2009).
[11] GALILI M, XU Jing, MULVAD H C H et al. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing[J]. Optics Express, 17, 2182-2187(2009).
[12] SIVILOGLOU G A, SUNTSOV S, EI-GANAINY R et al. Enhanced third-order nonlinear effects in optical AlGaAs nanowires[J]. Optics Express, 14, 9377-9384(2006).
[13] DUCHESNE D, MORANDOTTI R, SIVILOGLOU G A et al. Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation[C](2007).
[14] GREEN W M J, LEE R K, DEROSE G A et al. Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control[J]. Optics Express, 13, 1651-1659(2005).
[15] TOLSTIKHIN V I. Single-mode vertical integration of active devices within passive waveguides of InP-based planar WDM components[C](2002).
[16] TOLSTIKHIN V I, DENSMORE A, PIMENOV K et al. Monolithically integrated optical channel monitor for DWDM transmission systems[J]. Journal of Lightwave Technology, 22, 146(2004).
[17] DOLGALEVA K, NG W C, QIAN Li et al. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion[J]. Optics Express, 19, 12440-12455(2011).
[18] DOLGALEVA K, NG W C, QIAN Li et al. Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides[J]. Optics Letters, 35, 4093-4095(2010).
[19] CUI Delong, HUBBARD S M, PAVLIDIS D et al. Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors[J]. Semiconductor Science and Technology, 17, 503(2002).
[20] DOLGALEVA K, NG W C, QIAN Li et al. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion[J]. Optics Express, 19, 12440-12455(2011).
[21] APIRATIKUL P, WATHEN J J, PORKOLAB G A et al. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides[J]. Optics Express, 22, 26814-26824(2014).
[22] SAEIDI S, AWAN K M, SIRBU L et al. Nonlinear photonics on-a-chip in Ⅲ-Ⅴ semiconductors: quest for promising material candidates[J]. Applied Optics, 56, 5532-5541(2017).
[23] SAEIDI S, RASEKH P, AWAN K M et al. Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides[J]. Optical Materials, 84, 524-530(2018).
[24] WEN Jin, LI Kang, GONG Yongkang et al. Numerical investigation of on-chip wavelength conversion based on InP/In1-xGaxAsyP1-y semiconductor waveguide platforms[J]. Optics Communications, 473, 125921(2020).
[25] JENSEN B, TORABI A. Refractive index of quaternary In1-xGaxAsyP1-ylattice matched to InP[J]. Journal of Applied Physics, 54, 3623-3625(1983).
Get Citation
Copy Citation Text
Jin WEN, Chenyao HE, Weijun QIN, Wei SUN, Bozhi LIANG, Keyu XIONG, Hui ZHANG, Zhengwei WU, Huimin YU, Qian WANG. Numerical Study of Broadband Wavelength Conversion Based on InP/In1-xGaxAsyP1-y Strip-loaded Waveguide[J]. Acta Photonica Sinica, 2022, 51(10): 1019003
Category:
Received: Aug. 15, 2022
Accepted: Oct. 20, 2022
Published Online: Nov. 30, 2022
The Author Email: Jin WEN (wenjin@xsyu.edu.cn)