Journal of Jiangsu University(Medicine Edition), Volume. 35, Issue 4, 292(2025)
Screening and analysis of ferroptosis-related genes in atherosclerosis
[1] [1] Bjrkegren JLM, Lusis AJ. Atherosclerosis: Recent developments[J]. Cell, 2022, 185(10): 1630-1645.
[2] [2] Liu C, Jiang Z, Pan Z, et al. The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis[J]. Front Cell Dev Biol, 2021, 9: 809516.
[3] [3] Dixon SJ, Lemberg KM, Lamprecht MR, etal. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[4] [4] Feng H, Schorpp K, Jin J, et al. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep, 2020, 30(10): 3411-3423. e7.
[5] [5] Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study[J]. Eur J Heart Fail, 2019, 21(8): 965-973.
[7] [7] He C, Kim HI, Park J, et al. The role of immune cells in different stages of atherosclerosis[J]. Int J Med Sci, 2024, 21(6): 1129-1143.
[8] [8] Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653-667.
[9] [9] Dufrusine B, Di Francesco A, Oddi S, et al. Iron-dependent trafficking of 5-lipoxygenase and impact on human macrophage activation[J]. Front Immunol, 2019, 10: 1347.
[10] [10] Ma C, Wu X, Zhang X, et al. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection[J]. Front Cell Infect Microbiol, 2022, 12: 1004148.
[11] [11] Bao X, Luo X, Bai X, et al. Cigarette tar mediates macrophage ferroptosis in atherosclerosis through the hepcidin/FPN/SLC7A11 signaling pathway[J]. Free Radic Biol Med, 2023, 201: 76-88.
[12] [12] Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1): 34.
[13] [13] Guo Y, Lu C, Hu K, et al. Ferroptosis in cardiovascular diseases: current status, challenges, and future perspectives[J]. Biomolecules, 2022, 12(3): 390.
[14] [14] Martinet W, Coornaert I, Puylaert P, et al. Macrophage death as a pharmacological target in atherosclerosis[J]. Front Pharmacol, 2019, 10: 306.
[15] [15] Guo Z, Ran Q, Roberts LJ 2nd, et al. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice[J]. Free Radic Biol Med, 2008, 44(3): 343-352.
[16] [16] Hu G, Yuan Z, Wang J. Autophagy inhibition and ferroptosis activation during atherosclerosis: Hypoxia-inducible factor 1 inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages[J]. Biomed Pharmacother, 2023, 161: 114333.
[17] [17] Goel HL, Karner ER, Kumar A, et al. YAP/TAZ-mediated regulation of laminin 332 is enabled by 4 integrin repression of ZEB1 to promote ferroptosis resistance[J]. J Biol Chem, 2024, 300(4): 107202.
[18] [18] Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis byagenome-wide analysis of DNA methylation[J]. Int J Mol Med, 2014, 33(5): 1355-1363.
[19] [19] Magenta A, Sileno S, D′agostino M, et al. Atherosclerotic plaque instability in carotid arteries: miR-200c as a promising biomarker[J]. Clin Sci(Lond), 2018, 132(22): 2423-2436.
[20] [20] Martinez-Campanario MC, Corts M, Moreno-Lanceta A, et al. Atherosclerotic plaque development in mice is enhanced by myeloid ZEB1 downregulation[J]. Nat Commun, 2023, 14(1): 8316.
[21] [21] Kessler T, Wobst J, Wolf B, etal. Functional characterization of the GUCY1A3 coronary artery disease risk locus[J]. Circulation, 2017, 136(5): 476-489.
[22] [22] Kumar S, Singh SK, Viswakarma N, et al. Mixed lineage kinase 3 inhibition induces T cell activation and cytotoxicity[J]. Proc Natl Acad Sci U S A, 2020, 117(14): 7961-7970.
[23] [23] Chignon A, Mathieu S, Rufiange A, et al. Enhancer promoter interactome and Mendelian randomization identify network of druggable vascular genes in coronary artery disease[J]. Hum Genomics, 2022, 16(1): 8.
[24] [24] Holdt LM, Teupser D. Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis[J]. Front Cardiovasc Med, 2018, 5: 145.
[25] [25] Nakanishi Y, Kang S, Kumanogoh A. Axon guidance molecules in immunometabolic diseases[J]. Inflamm Regen, 2022, 42(1): 5.
[26] [26] Libby P, Buring JE, Badimon L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 5(1): 56.
[27] [27] Chistiakov DA, Melnichenko AA, Myasoedova VA, et al. Mechanisms of foam cell formation in atherosclerosis[J]. J Mol Med(Berl), 2017, 95(11): 1153-1165.
[28] [28] Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease[J]. Vascul Pharmacol, 2019, 112: 54-71.
[29] [29] Ait-Oufella H, Salomon BL, Potteaux S, etal. Natural regulatory T cells control the development of atherosclerosis in mice[J]. Nat Med, 2006, 12(2): 178-180.
[30] [30] Subramanian M, Tabas I. Dendritic cells in atherosclerosis[J]. Semin Immunopathol, 2014, 36(1): 93-102.
[31] [31] Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs[J]. Nat Rev Genet, 2007, 8(2): 93-103.
[32] [32] Fernandez Esmerats J, Villa-Roel N, Kumar S, et al. Disturbed flow increases UBE2C(ubiquitin E2 ligase C) via loss of miR-483-3p, inducing aortic valve calcification by the pVHL(von hippel-lindau protein)and HIF-1(hypoxia-inducible factor-1)pathway in endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2019, 39(3): 467-481.
[33] [33] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[34] [34] Seo J, Jin D, Choi CH, et al. Integration of microRNA, mRNA, and protein expression data for the identification of cancer-related microRNAs[J]. PLoS One, 2017, 12(1): e0168412.
[35] [35] Ozer NK, Azzi A. Effect of vitamin E on the development of atherosclerosis[J]. Toxicology, 2000, 148(2/3): 179-185.
[36] [36] Smith LK, Shah RR, Cidlowski JA. Glucocorticoids modulate microRNA expression and processing during lymphocyte apoptosis[J]. J Biol Chem, 2010, 285(47): 36698-36708.
[37] [37] Kino T, Nordeen S K, Chrousos G P. Conditional modulation of glucocorticoid receptor activities by CREB-binding protein(CBP)and p300[J]. J Steroid Biochem Mol Biol, 1999, 70(1-3): 15-25.
[38] [38] Lai YS, Putra R, Aui SP, et al. M2C polarization by baicalin enhances efferocytosis via upregulation of MERTK receptor[J]. Am J Chin Med, 2018, 46(8): 1899-1914.
[39] [39] Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers[J]. Br J Pharmacol, 2013, 169(8): 1672-1692.
[40] [40] Guo B, Yu Y, Wang M, et al. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases[J]. Biomed Pharmacother, 2024, 172: 116313.
Get Citation
Copy Citation Text
LI Yi, FAN Ye, ZHANG Ziyun, LIANG Lu, CONG Li. Screening and analysis of ferroptosis-related genes in atherosclerosis[J]. Journal of Jiangsu University(Medicine Edition), 2025, 35(4): 292
Special Issue:
Received: Jan. 16, 2025
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: CONG Li (congli@hunnu.edu.cn)