Infrared and Laser Engineering, Volume. 51, Issue 8, 20210789(2022)
Development of metrology and calibration devices for ophthalmic OCT equipment based on 3D printing technology
[1] D Huang, E A Swanson, C P Lin, et al. Optical coherence tomography. Science, 254, 1178-1181(1991).
[2] N Minakaran, Carvalho E R de, A Petzold, et al. Optical coherence tomography (OCT) in neuro-ophthalmology. Eye, 35, 17-32(2021).
[3] Z Liu, O Saeedi, F Zhang, et al. Quantification of retinal ganglion cell morphology in human glaucomatous eyes. Investigative Ophthalmology & Visual Science, 62, 34(2021).
[4] M Everett, S Magazzeni, T Schmoll, et al. Optical coherence tomography: From technology to applications in ophthalmology. Translational Biophotonics, 3, e202000012(2021).
[5] D Hammer, R Villanueva, A Agrawal, et al. Distribution of inner limiting membrane microglia in glaucoma measured with adaptive optics-optical coherence tomography. Investigative Ophthalmology & Visual Science, 61, 3498(2020).
[6] [6] Tomlins P H, Ferguson R A, Hart C, et al. Pointspread function phantoms f optical coherence tomography[R]. dlesex: National Physical Labaty, 2009.
[7] A Agrawal, T J Pfefer, N Gilani, et al. Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom. Optics Letters, 35, 2269-2271(2010).
[8] [8] Pfefer J, Fouad A, Chen C W, et al. Multisystem comparison of optical coherence tomography perfmance with point spread function phantoms [C]Design Quality f Biomedical Technologies VI. International Society f Optics Photonics, 2013, 8573: 85730 C.
[9] Zhixiong Hu, Wenli Liu, Baoyu Hong, et al. A physical model eye with 3D resolution test targets for optical coherence tomography. Opto-Electronic Engineering, 41, 28-32, 38(2014).
[10] Z Cao, Z Ding, Z Hu, et al. Model eyes with curved multilayer structure for the axial resolution evaluation of an ophthalmic optical coherence tomography device. Journal of Innovative Optical Health Sciences, 11, 1850013(2018).
[11] Zhixiong Hu, Bingtao Hao, Wenli Liu, et al. Research on point spread function phantom fabrication and application for evaluating resolution performance of OCT systems. Acta Optica Sinica, 35, 0417001(2015).
[12] H Wang, W Liu, Z Hu, et al. Model eye tool for retinal optical coherence tomography instrument calibration. Journal of Innovative Optical Health Sciences, 14, 2150010(2021).
[13] [13] International ganization f Stardization. ISO 16971: 2005 Ophthalmic instrumentsOptical coherence tomograph f the posteri segment of the human eye [S]. 2015.
[14] N Kedia, Z Liu, R D Sochol, et al. 3-D printed photoreceptor phantoms for evaluating lateral resolution of adaptive optics imaging systems. Optics Letters, 44, 1825-1828(2019).
[15] A C Lamont, M A Restaino, A T Alsharhan, et al. Direct laser writing of a titanium dioxide-laden retinal cone phantom for adaptive optics-optical coherence tomography. Optical Materials Express, 10, 2757-2767(2020).
[16] H Horng, ’Brien K O, A Lamont, et al. 3D printed vascular phantoms for high-resolution biophotonic image quality assessment via direct laser writing. Optics Letters, 46, 1987-1990(2021).
[17] [17] Aumann S, Donner S, Fischer J, et al. Optical Coherence Tomography (OCT): Principle Technical Realization[M]Bille J. High Resolution Imaging in Microscopy Ophthalmology. Cham: Springer, 2019: 5985.
[18] [18] Refractive Index. INFO [EBOL]. [20211220]. https:refractiveindex.infoshelf=glass&book=CDGMK&page=K4A.
Get Citation
Copy Citation Text
Liangcheng Duan, Wenli Liu, Xiaowen Qin, Tao Cui, Xiuyu Li, Junbang Zhao, Xiang Ma, Zhixiong Hu. Development of metrology and calibration devices for ophthalmic OCT equipment based on 3D printing technology[J]. Infrared and Laser Engineering, 2022, 51(8): 20210789
Category: Phtotoelectric measurement
Received: Oct. 28, 2021
Accepted: --
Published Online: Jan. 9, 2023
The Author Email: Hu Zhixiong (huzhixong@nim.ac.cn)