Laser & Optoelectronics Progress, Volume. 55, Issue 11, 111001(2018)

A Max Margin Based Semi-Supervised Reranking Method

Tongzhe Zhang, Yuting Su, and Hongbin Guo*
Author Affiliations
  • School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(7)
    Flow chart of the proposed reranking algorithm
    Performance comparison between (a) initial search results and (b) reranking results based on query "angel"
    Performance comparison of different datasets
    • Table 1. Performance comparison for different trade-off parameters

      View table

      Table 1. Performance comparison for different trade-off parameters

      CDepth
      102030405060708090100
      0.010.6340.5900.5720.5630.5590.5570.5550.5550.5580.562
      0.10.8070.7220.6820.6590.6440.6340.6280.6250.6240.626
      10.8620.7660.7230.6970.6790.6670.6590.6560.6530.653
      100.8610.7660.7220.6950.6760.6660.6580.6550.6520.652
      1000.8610.7660.7220.6950.6760.6660.6580.6540.6520.652
    • Table 2. Performance comparison for different labeled numbers

      View table

      Table 2. Performance comparison for different labeled numbers

      kDepth
      102030405060708090100
      50.8620.7660.7230.6970.6790.6670.6590.6560.6530.653
      100.9300.8440.7830.7470.7280.7140.7040.6980.6940.693
      150.8660.8790.8270.7890.7620.7440.7310.7230.7170.715
      200.8030.8510.8470.8120.7860.7660.7510.7420.7350.730
    • Table 3. Performance comparison for different ranking fractional intervals

      View table

      Table 3. Performance comparison for different ranking fractional intervals

      mDepth
      102030405060708090100
      00.7690.6950.6610.6400.6260.6180.6130.6100.6100.614
      0.50.8620.7660.7230.6970.6790.6670.6590.6560.6530.653
      10.8560.7640.7220.6970.6790.6660.6590.6550.6530.653
      1.50.8500.7610.7190.6920.6770.6650.6560.6520.6500.650
      20.8440.7560.7150.6860.6710.6610.6540.6500.6470.647
      2.50.8380.7520.7110.6830.6660.6570.6500.6470.6440.643
      30.8320.7460.7050.6800.6610.6530.6460.6420.6390.640
      3.50.8270.7400.6990.6740.6570.6480.6410.6370.6350.637
      40.8230.7360.6950.6700.6540.6430.6370.6330.6310.634
      4.50.8150.7290.6880.6630.6480.6380.6320.6280.6270.630
      50.8070.7220.6820.6590.6440.6340.6280.6250.6240.626
    • Table 4. Performance comparison for different image search reranking methods

      View table

      Table 4. Performance comparison for different image search reranking methods

      MethodDepth
      102030405060708090100
      RankSVM0.6700.6650.6590.6490.6410.6360.6340.6340.6330.636
      RankSVM+LPP0.8010.7350.7020.6790.6690.6590.6540.6510.6490.650
      RANGE0.8350.7530.7170.6920.6760.6660.6600.6580.6560.657
      Proposed0.8590.7600.7190.6910.6760.6680.6620.6590.6580.658
    Tools

    Get Citation

    Copy Citation Text

    Tongzhe Zhang, Yuting Su, Hongbin Guo. A Max Margin Based Semi-Supervised Reranking Method[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 23, 2018

    Accepted: May. 28, 2018

    Published Online: Aug. 14, 2019

    The Author Email: Hongbin Guo (ghb3011204117@163.com)

    DOI:10.3788/LOP55.111001

    Topics