INFRARED, Volume. 44, Issue 1, 23(2023)
Study on Self-Consistent Electronic Subband Structure of GaInAs/ AlInAs-Based Mid-Infrared Quantum Cascade Laser
[1] [1] Faist J, Capasso F, Sivco D L, et al. Quantum Cascade Lase[J]. Science, 1994, 264(5158): 553-556.
[2] [2] Romanova K A, Galyametdinov Y G. Theoretical simulation of quantum cascade lasers based on GaInAs/AlInAs and GaInAs/AlAsSb quantum wells[J]. IOP Conference Series: Materials Science and Engineering, 2020, 862(2): 022040.
[3] [3] Giglio M, Zifarelli A, Sampaolo A, et al. Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing[J]. Photoacoustics, 2020, 17: 100159.
[4] [4] Sobanski N, Tuzson B, Scheidegger P, et al. Advances in High-Precision NO2 Measurement by Quantum Cascade Laser Absorption Spectroscopy[J]. Applied Sciences, 2021, 11(3): 12-22.
[5] [5] Terabayashi R, Saito K, Sonnenschein V, et al. Mid-infrared cavity ring-down spectroscopy using DFB quantum cascade laser with optical feedback for radiocarbon detection[J]. Japanese Journal of Applied Physics, 2020, 59(9): 092007.
[6] [6] Zimmerleiter R, Nikzad-Langerodi R, Ruckebusch C, et al. QCL-based mid-infrared hyperspectral imaging of multilayer polymer oxygen barrier-films[J]. Polymer Testing, 2021, 98: 107-190.
[7] [7] Koyama T, Shibata N, Kino S, et al. A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser[J]. Sensors, 2020, 20(12): 34-38.
[8] [8] Villanueva-López V, Pacheco-Londoo LC, Villarreal-González R, et al. API Content and Blend Uniformity Using Quantum Cascade Laser Spectroscopy Coupled with Multivariate Analysis[J]. Pharmaceutics, 2021, 13(7): 985.
[9] [9] Pang X, Ozolins O, Zhang L, et al. Free-Space Communications Enabled by Quantum Cascade Lasers[J]. Physica Status Solidi (a), 2020, 218(3): 2000407.
[10] [10] Stephen M J, Dial E, Razeghi M. High-speed Free Space Optical Communications Based on Quantum Cascade Lasers and Type-II Superlattice Detectors[C]. SPIE, 2020, 11288: 1128814.
[11] [11] Meng B, Wang Q J. Broadly tunable single-mode mid-infrared quantum cascade lasers[J]. Journal of Optics, 2015, 17(2): 023001.
[12] [12] Giglio M, Zifarelli A, Sampaolo A, et al. Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing[J]. Photoacoustics, 2020, 17: 100159.
[13] [13] Sobanski N, Tuzson B, Scheidegger P, et al. Advances in High-Precision NO2 Measurement by Quantum Cascade Laser Absorption Spectroscopy[J]. Applied Sciences, 2021, 11(3): 12-22.
[14] [14] Liu N, Xu L, Zhou S, et al. Soil Respiration Analysis Using a Mid-infrared Quantum Cascade Laser and Calibration-free WMS-based Dual-gas Sensor[J]. Analyst, 2021, 146(12): 3841-3851.
[15] [15] Terabayashi R, Saito K, Sonnenschein V, et al. Mid-infrared Cavity Ring-down Spectroscopy Using DFB Quantum Cascade Laser with Optical Feedback for Radiocarbon Detection[J]. Japanese Journal of Applied Physics, 2020, 59(9): 092007.
[16] [16] Zimmerleiter R, Nikzad-Langerodi R, Ruckebusch C, et al. QCL-based Mid-infrared Hyperspectral Imaging of Multilayer Polymer Oxygen Barrier-films[J]. Polymer Testing, 2021, 98: 107-190.
[17] [17] Koyama T, Takuya N, Kino S, et al. A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser[J]. Sensors, 2020, 20(12): 34-38.
[18] [18] Jernelv IL, Hjelme DR, Aksnes A. Infrared Measurements of Glucose in Peritoneal Fluid with a Tuneable Quantum Cascade Laser[J]. Biomedical Optics Express, 2020, 11(7): 3818-3829.
[19] [19] Villanueva-López V, Pacheco-Londono L C, Villarreal-González R, et al. API Content and Blend Uniformity Using Quantum Cascade Laser Spectroscopy Coupled with Multivariate Analysis[J]. Pharmaceutics, 2021, 13(7): 985.
[20] [20] Beck M, Hofstetter D, Aellen T, et al. Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature[J]. Science, 2002, 295(5553): 301-305.
[21] [21] Bai Y, Bandyopadhyay N, Tsao S, et al. Highly Temperature Insensitive Quantum Cascade Lasers[J]. Applied Physics Letters, 2010, 97(25): 251104.
[22] [22] Lyakh A, Maulini R, Tsekoun A, et al. 3 W Continuouswave Room Temperature Single-facet Emission from Quantum Cascade Lasers Based on Nonresonant Extraction Design Approach[J]. Applied Physics Letters, 2009, 95(14): 141113.
[23] [23] Bai Y, Darvish S R, Slivken S, et al. Room Temperature Continuous Wave Operation of Quantum Cascade Lasers with Watt-level Optical Power[J]. Applied Physics Letters, 2008, 92(10): 101105.
[24] [24] Tavish J M, Indjin D, Harrison P. Aspects of the Internal Physics of GaInAs/AlInAs Quantum Cascade Lasers[J]. Journal of Applied Physics, 2006, 99(11): 114505.
[25] [25] Li J, Ma X, Wei X, et al. Efficient Self-consistent Schrdinger-Poisson-rate Equation Iteration Method for the Modeling of Strained Quantum Cascade Lasers[J]. Journal of Physics D: Applied Physics, 2016, 49(19): 195106.
[26] [26] Khorami A A, Riahi A, Ghahramani M, et al. Design and Simulation of Terahertz GaAs/AlGaAs Quantum Cascade Laser for Higher Power Performance[J]. Optik, 2016, 127(3): 1097-1099.
[27] [27] Hutchings D C. Transfer Matrix Approach to the Analysis of an Arbitrary Quantum Well Structure in an Electric Field[J]. Applied Physics Letters, 1989, 55(11): 1082-1084.
[28] [28] Alharbi F. An Explicit FDM Calculation of Nonparabolicity Effects in Energy States of Quantum Wells[J]. Optical and Quantum Electronics, 2008, 40(8): 551-559.
[29] [29] Harrison P, Alex V. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures[M]. New York: John Wiley & Sons, 2016.
[30] [30] Xu W, Folkes P A, Gumbs G. Self-consistent Electronic Subband Structure of Undoped InAs/GaSb-based Type-II and Broken-gap Quantum Well Systems[J]. Journal of Applied Physics, 2007, 102(3): 033703.
[31] [31] Vurgaftman I, Meyer JR, Ram-Mohan LR. Band Parameters for III-V Compound Semiconductors and Their Alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
[32] [32] Tredicucci A, Gmachl C, Capasso F, et al. Long Wavelength Superlattice Quantum Cascade Lasers at λ17 m[J]. Applied Physics Letters, 1999, 74(5): 638-640.
[33] [33] Xu W. LO-phonon Emission in an AlxGa1-xAs-GaAs-AlyGa1-yAs Single Quantum Well with Two Occupied Electronic Subbands[J]. Physical Review B, 1995, 51(19): 13294-13302.
[34] [34] Zhu C, Zhang Y G, Li A Z, et al. Analysis of Key Parameters Affecting the Thermal Behavior and Performance of Quantum Cascade Lasers[J]. Journal of Applied Physics, 2006, 100(5): 053105.
[35] [35] Saha S, Kumar J. Effect of Temperature and Electric Field on Quantum Cascade Laser Transients[C]. Kolkata: International Conference on Optics and Photonics, 2015.
[36] [36] Li Y Y, Li A Z, Gu Y, et al. The Effects of Injector Doping Densities on Lasing Properties of InP-based Quantum Cascade Lasers at 4.3 m[J]. Journal of Crystal Growth, 2013, 378: 587-590.
Get Citation
Copy Citation Text
ZHOU Ming-Yan, XU Wen, XIAO Yi-Ming, XIAO Huan, LI Long-Long, Francois M. Peeters, LI Hao-Wen, CHEN Si-Fan. Study on Self-Consistent Electronic Subband Structure of GaInAs/ AlInAs-Based Mid-Infrared Quantum Cascade Laser[J]. INFRARED, 2023, 44(1): 23
Received: Sep. 19, 2022
Accepted: --
Published Online: Mar. 12, 2023
The Author Email: Wen XU (wenxu_issp@aliyun.com)