Chinese Journal of Lasers, Volume. 44, Issue 7, 703006(2017)
Fresh Blood of Two-Dimensional Materials: Group IV-VI Semiconductors
[1] [1] Lembke D, Bertolazzi S, Kis A. Single-layer MoS2 electronics[J]. Accounts of Chemical Research, 2015, 48(1): 100-110.
[2] [2] Bhimanapati G R, Lin Z, Meunier V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509-11539.
[3] [3] Duan X, Wang C, Pan A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges[J]. Chemical Society Reviews, 2015, 44(24): 8859-8876.
[4] [4] Guo Y, Xu K, Wu C, et al. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials[J]. Chemical Society Reviews, 2015, 44(3): 637-646.
[5] [5] Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: Preparation, properties and applications[J]. Chemical Society Reviews, 2013, 42(5): 1934-1946.
[6] [6] Li S L, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J]. Chemical Society Reviews, 2016, 45(1): 118-151.
[7] [7] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.
[8] [8] Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons[J]. Physical Review Letters, 2006, 97(21): 216803.
[9] [9] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196.
[10] [10] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[11] [11] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[12] [12] Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.
[13] [13] Hui Y Y, Liu X, Jie W, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet[J]. ACS Nano, 2013, 7(8): 7126-7131.
[14] [14] Jeong H Y, Lee S Y, Ly T H, et al. Visualizing point defects in transition-metal dichalcogenides using optical microscopy[J]. ACS Nano, 2016, 10(1): 770-777.
[15] [15] Kwon K C, Kim C, Le Q V, et al. Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices[J]. ACS Nano, 2015, 9(4): 4146-4155.
[16] [16] Pogna EA A, Marsili M, De Fazio D, et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2[J]. ACS Nano, 2016, 10(1): 1182-1188.
[17] [17] Shi J, Zhang X, Ma D, et al. Substrate facet effect on the growth of monolayer MoS2 on Au foils[J]. ACS Nano, 2015, 9(4): 4017-4025.
[18] [18] Amani M, Lien DH, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2[J]. Science, 2015, 350(6264): 1065-1068.
[19] [19] Yin X, Ye Z, Chenet D A, et al. Edge nonlinear optics on a MoS2 atomic monolayer[J]. Science, 2014, 344(6183): 488-490.
[20] [20] Ly T H, Chiu M H, Li M Y, et al. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides[J]. ACS Nano, 2014, 8(11): 11401-11408.
[21] [21] Tsai DS, Liu K K, Lien D H, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7(5): 3905-3911.
[22] [22] Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.
[23] [23] Zhang W, Huang J K, Chen C H, et al. High-gain phototransistors based on a CVD MoS2 monolayer[J]. Advanced Materials, 2013, 25(25): 3456-3461.
[24] [24] Xu Z Q, Zhang Y, Lin S, et al. Synthesis and transfer of large-area monolayer WS2 crystals: Moving toward the recyclable use of sapphire substrates[J]. ACS Nano, 2015, 9(6): 6178-6187.
[25] [25] Yun S J, Chae S H, Kim H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils[J]. ACS Nano, 2015, 9(5): 5510-5519.
[26] [26] Perea-López N, Elías A L, Berkdemir A, et al. Photosensor device based on few-layered WS2 films[J]. Advanced Functional Materials, 2013, 23(44): 5511-5517.
[27] [27] Tongay S, Fan W, Kang J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Letters, 2014, 14(6): 3185-3190.
[28] [28] Chernikov A, Ruppert C, Hill H M, et al. Population inversion and giant bandgap renormalization in atomically thin WS2 layers[J]. Nature Photonics, 2015, 9(7): 466-470.
[29] [29] Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.
[30] [30] Lipatov A, Wilson P M, Shekhirev M, et al. Few-layered titanium trisulfide TiS3 field-effect transistors[J]. Nanoscale, 2015, 7(29): 12291-12296.
[31] [31] Lei S, Ge L, Najmaei S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272.
[32] [32] Lin M, Wu D, Zhou Y, et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy[J]. Journal of the American Chemical Society, 2013, 135(36): 13274-13277.
[33] [33] Lei S, Wen F, Ge L, et al. An atomically layered InSe avalanche photodetector[J]. Nano Letters, 2015, 15(5): 3048-3055.
[34] [34] Sucharitakul S, Goble N J, Kumar U R, et al. Intrinsic electron mobility exceeding 103 cm2/(V s) in multilayer InSe FETs[J]. Nano Letters, 2015, 15(6): 3815-3819.
[35] [35] Cai H, Soignard E, Ataca C, et al. Band engineering by controlling vdW epitaxy growth mode in 2D gallium chalcogenides[J]. Advanced Materials, 2016, 28(34): 7375-7382.
[36] [36] Lei S, Ge L, Liu Z, et al. Synthesis and photoresponse of large GaSe atomic layers[J]. Nano Letters, 2013, 13(6): 2777-2781.
[37] [37] Zhou Y, Nie Y, Liu Y, et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets[J]. ACS Nano, 2014, 8(2): 1485-1490.
[38] [38] Zhou Y, Deng B, Ren X, et al. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid[J]. Nano Letters, 2016, 16(3): 2103-2107.
[39] [39] Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection[J]. ACS Nano, 2014, 8(8): 8582-8590.
[40] [40] Hu P, Wen Z, Wang L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012, 6(7): 5988-5994.
[41] [41] Furchi M M, Polyushkin D K, Pospischil A, et al. Mechanisms of photoconductivity in atomically thin MoS2[J]. Nano Letters, 2014, 14(11): 6165-6170.
[42] [42] Cheng C C, Wu C L, Liao Y M, et al. Ultrafast and ultrasensitive gas sensors derived from a large Fermi-level shift in the Schottky junction with Sieve-layer modulation[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17382-17388.
[43] [43] Pak Y, Lim N, Kumaresan Y, et al. Palladium nanoribbon array for fast hydrogen gas sensing with ultrahigh sensitivity[J]. Advanced Materials, 2015, 27(43): 6945-6952.
[44] [44] Chang C M, Hsu C H, Liu Y W, et al. Interface engineering: Broadband light and low temperature gas detection abilities using a nano-heterojunction device[J]. Nanoscale, 2015, 7(47): 20126-20131.
[45] [45] Cui S, Pu H, Wells S A, et al. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors[J]. Nature Communications, 2015, 6: 8632.
[46] [46] Late D J, Liu B, Luo J, et al. GaS and GaSe ultrathin layer transistors[J]. Advanced Materials, 2012, 24(26): 3549-3554.
[47] [47] Chuang S, Battaglia C, Azcatl A, et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts[J]. Nano Letters, 2014, 14(3): 1337-1342.
[48] [48] Perumal P, Ulaganathan R K, Sankar R, et al. Ultra-thin layered ternary single crystals Sn(SxSe1-x)2 with bandgap engineering for high performance phototransistors on versatile substrates[J]. Advanced Functional Materials, 2016, 26(21): 3630-3638.
[49] [49] Tamalampudi S R, Lu Y-Y, Kumar U R, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response[J]. Nano Letters, 2014, 14(5): 2800-2806.
[50] [50] Su G, Hadjiev V G, Loya P E, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Letters, 2015, 15(1): 506-513.
[51] [51] Wang Q, Kang S Z, Li X, et al. A facile preparation of crystalline GeS2 nanoplates and their photocatalytic activity[J]. Journal of Alloys and Compounds, 2015, 631(4): 21-25.
[52] [52] Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe[J]. Science, 2016, 353(6296): 274-278.
[53] [53] Shi G, Kioupakis E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe[J]. Nano Letters, 2015, 15(10): 6926-6931.
[54] [54] Kamal C, Chakrabarti A, Ezawa M. Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene[J]. Physical Review B, 2016, 93(12): 125428.
[55] [55] Huang Y, Sutter E, Sadowski J T, et al. Tin disulfide-An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics[J]. ACS Nano, 2014, 8(10): 10743-10755.
[56] [56] Song H S, Li S L, Gao L, et al. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits[J]. Nanoscale, 2013, 5(20): 9666-9670.
[57] [57] De D, Manongdo J, See S, et al. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes[J]. Nanotechnology, 2013, 24(2): 025202.
[58] [58] Su Y, Ebrish M A, Olson E J, et al. SnSe2 field-effect transistors with high drive current[J]. Applied Physics Letters, 2013, 103(26): 263104.
[59] [59] Pan T S, De D, Manongdo J, et al. Field effect transistors with layered two-dimensional SnS2-xSex conduction channels: Effects of selenium substitution[J]. Applied Physics Letters, 2013, 103(9): 093108.
[60] [60] Sinsermsuksakul P, Chakraborty R, Kim S B, et al. Antimony-doped tin(II) sulfide thin films[J]. Chemistry of Materials, 2012, 24(23): 4556-4562.
[61] [61] Xia J, Li X Z, Huang X, et al. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses[J]. Nanoscale, 2016, 8(4): 2063-2070.
[62] [62] Guo C, Tian Z, Xiao Y, et al. Field-effect transistors of high-mobility few-layer SnSe2[J]. Applied Physics Letters, 2016, 109(20): 203104.
[63] [63] Pei T, Bao L, Wang G, et al. Few-layer SnSe2 transistors with high on/off ratios[J]. Applied Physics Letters, 2016, 108(5): 053506.
[64] [64] Chung K M, Wamwangi D, Woda M, et al. Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications[J]. Journal of Applied Physics, 2008, 103(8): 083523.
[65] [65] Dong S, Liu X, Li X, et al. Room temperature weak ferromagnetism in Sn1-xMnxSe2 2D films grown by molecular beam epitaxy[J]. APL Materials, 2016, 4(3): 032601.
[66] [66] Li G, Ding G, Gao G. Thermoelectric properties of SnSe2 monolayer[J]. Journal of Physics: Condensed Matter, 2017, 29(1): 015001.
[67] [67] Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Advanced Materials, 2015, 27(48): 8035-8041.
[68] [68] Ulaganathan R K, Lu Y Y, Kuo C J, et al. High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors[J]. Nanoscale, 2016, 8(4): 2284-2292.
[69] [69] Mukherjee B, Cai Y, Tan H R, et al. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9594-9604.
[70] [70] Yoon S M, Song H J, Choi H C. P-type semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process[J]. Advanced Materials, 2010, 22(19): 2164-2167.
[71] [71] Ham G, Shin S, Park J, et al. Tuning the electronic structure of tin sulfides grown by atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2013, 5(18): 8889-8896.
[72] [72] Zhou X, Gan L, Zhang Q, et al. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition[J]. Journal of Materials Chemistry C, 2016, 4(11): 2111-2116.
[73] [73] Rabkin A, Samuha S, Abutbul R E, et al. New nanocrystalline materials: A previously unknown simple cubic phase in the SnS binary system[J]. Nano Letters, 2015, 15(3): 2174-2179.
[74] [74] Mutlu Z, Wu R J, Wickramaratne D, et al. Phase engineering of 2D tin sulfides[J]. Small, 2016, 12(22): 2998-3004.
[75] [75] Wang Z, Wang J, Zang Y, et al. Molecular beam epitaxy-grown SnSe in the Rock-Salt structure: An artificial topological crystalline insulator material[J]. Advanced Materials, 2015, 27(28): 4150-4154.
[76] [76] Li L, Chen Z, Hu Y, et al. Single-layer single-crystalline SnSe nanosheets[J]. Journal of the American Chemical Society, 2013, 135(4): 1213-1216.
[77] [77] Zhao S, Wang H, Zhou Y, et al. Controlled synthesis of single-crystal SnSe nanoplates[J]. Nano Research, 2015, 8(1): 288-295.
[78] [78] Wang Q, Cai K, Li J, et al. Rational design of ultralarge Pb1-xSnxTe nanoplates for exploring crystalline symmetry-protected topological transport[J]. Advanced Materials, 2016, 28(4): 617-623.
[79] [79] Shen J, Xie Y, Cha J J. Revealing surface states in In-doped SnTe nanoplates with low bulk mobility[J]. Nano Letters, 2015, 15(6): 3827-3832.
[80] [80] Wang Q, Wen Y, He P, et al. High-performance phototransistor of epitaxial PbS nanoplate-graphene heterostructure with edge contact[J]. Advanced Materials, 2016, 28(30): 6497-6503.
[81] [81] Wen Y, Yin L, He P, et al. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS/MoS2 heterostructures with edge contacts[J]. Nano Letters, 2016, 16(10): 6437-6444.
[82] [82] Wang X, Liu B, Wang Q, et al. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors[J]. Advanced Materials, 2013, 25(10): 1479-1486.
[83] [83] Mukherjee B, Hu Z, Zheng M, et al. Stepped-surfaced GeSe2 nanobelts with high-gain photoconductivity[J]. Journal of Materials Chemistry, 2012, 22(47): 24882-24888.
[84] [84] Park Y W, Jerng S-K, Jeon J H, et al. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation[J]. 2D Materials, 2017, 4(1): 014006.
[85] [85] Yu P, Yu X, Lu W, et al. Fast photoresponse from 1T tin diselenide atomic layers[J]. Advanced Functional Materials, 2016, 26(1): 137-145.
[86] [86] Tao Y, Wu X, Wang W, et al. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film[J]. Journal of Materials Chemistry C, 2015, 3(6): 1347-1353.
[87] [87] Yang Z, Liang H, Wang X, et al. Atom-thin SnS2-xSex with adjustable compositions by direct liquid exfoliation from single crystals[J]. ACS Nano, 2016, 10(1): 755-762.
[88] [88] Luo B, Fang Y, Wang B, et al. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage[J]. Energy & Environmental Science, 2012, 5(1): 5226-5230.
[89] [89] Wu J, Hu Z, Jin Z, et al. Spiral growth of SnSe2 crystals by chemical vapor deposition[J]. Advanced Materials Interfaces, 2016, 3(16): 1600383.
[90] [90] Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications[J]. ACS Nano, 2014, 8(1): 923-930.
[91] [91] Liu B, Fathi M, Chen L, et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study[J]. ACS Nano, 2015, 9(6): 6119-6127.
[92] [92] Schmidt H, Wang S, Chu L, et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition[J]. Nano Letters, 2014, 14(4): 1909-1913.
[93] [93] Wang H, Yu L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors[J]. Nano Letters, 2012, 12(9): 4674-4680.
[94] [94] Zhou H, Wang C, Shaw J C, et al. Large area growth and electrical properties of p-Type WSe2 atomic layers[J]. Nano Letters, 2015, 15(1): 709-713.
[95] [95] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nano, 2013, 8(7): 497-501.
[96] [96] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nano, 2012, 7(8): 490-493.
[97] [97] Fan C, Li Y, Lu F, et al. Wavelength dependent UV-Vis photodetectors from SnS2 flakes[J]. RSC Advances, 2016, 6(1): 422-427.
[98] [98] Ahn J H, Lee M J, Heo H, et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals[J]. Nano Letters, 2015, 15(6): 3703-3708.
[99] [99] Huang Y, Xu K, Wang Z, et al. Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties[J]. Nanoscale, 2015, 7(41): 17375-17380.
[100] [100] Huang L, Yu Y, Li C, et al. Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: A case study of SnSe2[J]. The Journal of Physical Chemistry C, 2013, 117(12): 6469-6475.
[101] [101] Burton L A, Colombara D, Abellon R D, et al. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2[J]. Chemistry of Materials, 2013, 25(24): 4908-4916.
[102] [102] Zhou X, Zhang Q, Gan L, et al. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors[J]. Advanced Functional Materials, 2016, 26(24): 4405-4413.
[103] [103] Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials, 2015, 14(12): 1195-1205.
[104] [104] Yuan H, Cheng G, You L, et al. Influence of metal-MoS2 interface on MoS2 transistor performance: Comparison of Ag and Ti contacts[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1180-1187.
[105] [105] Xu Y, Cheng C, Du S, et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions[J]. ACS Nano, 2016, 10(5): 4895-4919.
[106] [106] Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Letters, 2013, 13(1): 100-105.
[107] [107] Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Letters, 2012, 12(7): 3788-3792.
[108] [108] Li S L, Komatsu K, Nakaharai S, et al. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers[J]. ACS Nano, 2014, 8(12): 12836-12842.
[109] [109] Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs[J]. ACS Nano, 2012, 6(10): 8563-8569.
[110] [110] Li S L, Wakabayashi K, Xu Y, et al. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors[J]. Nano Letters, 2013, 13(8): 3546-3552.
[111] [111] Kang D H, Shim J, Jang S K, et al. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane[J]. ACS Nano, 2015, 9(2): 1099-1107.
[112] [112] Kos'mider K, Fernández-Rossier J. Electronic properties of the MoS2-WS2 heterojunction[J]. Physical Review B, 2013, 87(7): 075451.
[113] [113] Liu Y, Weiss N O, Duan X, et al. van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042.
[114] [114] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. ACS Nano, 2011, 5(10): 7707-7712.
[115] [115] Qiu H, Pan L, Yao Z, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances[J]. Applied Physics Letters, 2012, 100(12): 123104.
[116] [116] Yin L, Zhan X, Xu K, et al. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling[J]. Applied Physics Letters, 2016, 108(4): 043503.
[117] [117] Late D J, Liu B, Matte H S, et al. Hysteresis in single-layer MoS2 field effect transistors[J]. ACS Nano, 2012, 6(6): 5635-5641.
[118] [118] Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen[J]. Journal of the American Chemical Society, 2014, 136(22): 7853-7856.
[119] [119] Lee H S, Baik S S, Lee K, et al. Metal semiconductor field-effect transistor with MoS2/conducting NiOx van der Waals Schottky interface for intrinsic high mobility and photoswitching speed[J]. ACS Nano, 2015, 9(8): 8312-8320.
[120] [120] Lembke D, Kis A. Breakdown of high-performance monolayer MoS2 transistors[J]. ACS Nano, 2012, 6(11): 10070-10075.
[121] [121] Feng W, Zheng W, Cao W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface[J]. Advanced Materials, 2014, 26(38): 6587-6593.
[122] [122] Choi Y, Kang J, Jariwala D, et al. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures[J]. Advanced Materials, 2016, 28(19): 3742-3748.
[123] [123] Kozawa D, Pu J, Shimizu R, et al. Photodetection in p-n junctions formed by electrolyte-gated transistors of two-dimensional crystals[J]. Applied Physics Letters, 2016, 109(20): 201107.
[124] [124] Chu L, Schmidt H, Pu J, et al. Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors[J]. Scientific Reports, 2014, 4: 7293.
[125] [125] Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano, 2015, 9(4): 4611-4620.
[126] [126] Stokbro K, Engelund M, Blom A. Atomic-scale model for the contact resistance of the nickel-graphene interface[J]. Physical Review B, 2012, 85(16): 165442.
[127] [127] Leong W S, Nai C T, Thong J T. What does annealing do to metal-graphene contacts [J]. Nano Letters, 2014, 14(7): 3840-3847.
[128] [128] Chen J R, Odenthal P M, Swartz A G, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts[J]. Nano Letters, 2013, 13(7): 3106-3110.
[129] [129] Wang Q, Wen Y, Yao F, et al. BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection[J]. Small, 2015, 11(40): 5388-5394.
[130] [130] Yan R, Fathipour S, Han Y, et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment[J]. Nano Letters, 2015, 15(9): 5791-5798.
[131] [131] Roy T, Tosun M, Hettick M, et al. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures[J]. Applied Physics Letters, 2016, 108(8): 083111.
[132] [132] Xia J, Zhu D, Wang L, et al. Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors[J]. Advanced Functional Materials, 2015, 25(27): 4255-4261.
[133] [133] Xue D J, Tan J, Hu J S, et al. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet[J]. Advanced Materials, 2012, 24(33): 4528-4533.
Get Citation
Copy Citation Text
Zhou Xing, Zhai Tianyou. Fresh Blood of Two-Dimensional Materials: Group IV-VI Semiconductors[J]. Chinese Journal of Lasers, 2017, 44(7): 703006
Special Issue:
Received: Jan. 13, 2017
Accepted: --
Published Online: Jul. 5, 2017
The Author Email: Zhou Xing (zhouxing0903@hust.edu.cn)