Journal of Inorganic Materials, Volume. 40, Issue 7, 772(2025)

Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation

Bowen TAN, Shuanglong GENG, Kai ZHANG*, and Bailin ZHENG*
Author Affiliations
  • School of Aerospace and Mechanics, Tongji University, Shanghai 200092, China
  • show less
    References(33)

    [1] LI M, LU J, CHEN Z et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 1800561(2018).

    [2] ZENG X, LI M, EL-HADY D A et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 1900161(2019).

    [3] VISWANATHAN V, EPSTEIN A H, CHIANG Y M et al. The challenges and opportunities of battery-powered flight[J]. Nature, 519(2022).

    [5] GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—a 2030 vision[J]. Nature Communications, 6279.

    [6] GAO Y, PAN Z, SUN J et al. High-energy batteries: beyond lithium-ion and their long road to commercialization[J]. Nano-micro Letters, 94(2022).

    [7] XU J, CAI X, CAI S et al. High-energy lithium-ion batteries: recent progress and a promising future in applications[J]. Energy Environmental Materials, e12450(2023).

    [8] ZUO X, ZHU J, MULLER-BUSCHBAUM P et al. Silicon based lithium-ion battery anodes: a chronicle perspective review[J]. Nano Energy, 113(2017).

    [9] TAN Y, WANG K. Silicon-based anode materials applied in high specific energy lithium-ion batteries: a review[J]. Journal of Inorganic Materials, 349(2019).

    [10] PRUSSIN S. Generation and distribution of dislocations by solute diffusion[J]. Journal of Applied Physics, 1876(1961).

    [12] LI Y, ZHANG K, YANG F. Generalized theory for DISes in a large deformed solid[J]. International Journal of Applied Mechanics, 2250024(2022).

    [13] CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2939(2007).

    [14] MCDOWELL M T, LEE S W, NIX W D et al. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Advanced Materials, 4966(2013).

    [15] SUN L, LIU Y, SHAO R et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries[J]. Energy Storage Materials, 482(2022).

    [16] VASCONCELOS DE, XU R, XU Z R et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives[J]. Chemical Reviews, 13043(2022).

    [17] LU B, YUAN Y, BAO Y H et al. Mechanics-based design of lithium-ion batteries: a perspective[J]. Physical Chemistry Chemical Physics, 29279(2022).

    [22] CHAN C K, PENG H, LIU G et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 31(2007).

    [23] SU N, QIU J S, WANG Z Y. F-doped carbon coated nano-Si anode with high capacity: preparation by gaseous fluorination and performance for lithium storage[J]. Journal of Inorganic Materials, 947(2023).

    [24] WANG J, CUI Y, WANG D. Design of hollow nanostructures for energy storage, conversion and production[J]. Advanced Materials, 1801993(2019).

    [26] YANG Z, XIA Y, JI J et al. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries[J]. RSC Advances, 12107(2016).

    [27] GUO Z Z, YAO L M. Improving the electrochemical performance of Si-based anode via gradient Si concentration[J]. Materials & Design, 107851(2019).

    [28] ZHANG W, GUI S, LI W et al. Functionally gradient silicon/graphite composite electrodes enabling stable cycling and high capacity for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 51954(2022).

    [29] DENG J, REN X, LIN H et al. Functionally gradient materials for sustainable and high-energy rechargeable lithium batteries: design principles, progress, and perspectives[J]. Journal of Energy Chemistry, 426(2024).

    [30] SUO Y, YANG F. One-dimensional analysis of the coupling between diffusion and deformation in a bilayer electrode[J]. Acta Mechanica Sinica, 589(2019).

    [32] XU Y, ZHENG B, ZHANG K et al. Effect of combining local velocity and chemical reaction on the interaction between diffusion and stresses in large deformed electrodes[J]. AIP Advances, 105103(2019).

    [34] SUTHAR B, NORTHROP P W C, RIFE D et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. Journal of the Electrochemical Society(2015).

    [35] CHEN Y, SANG M, JIANG W et al. Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries[J]. Engineering Fracture Mechanics, 107866(2021).

    [36] GENG S L, ZHOU J W, TAN B W et al. Impact of thickness and charge rate on the electrochemical performance of Si-based electrodes[J]. Cell Reports Physical Science, 102305(2024).

    Tools

    Get Citation

    Copy Citation Text

    Bowen TAN, Shuanglong GENG, Kai ZHANG, Bailin ZHENG. Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation[J]. Journal of Inorganic Materials, 2025, 40(7): 772

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 11, 2024

    Accepted: --

    Published Online: Sep. 3, 2025

    The Author Email: Kai ZHANG (kaizhang@tongji.edu.cn), Bailin ZHENG (blzheng@tongji.edu.cn)

    DOI:10.15541/jim20240472

    Topics