APPLIED LASER, Volume. 45, Issue 1, 209(2025)

Research and Progress on Water LiDAR for Optical Detection

Gao Chenyuan1, Lei Shaohua1,2、*, Jin Qiu1, and Li Guangying3
Author Affiliations
  • 1National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, Jiangsu, China
  • 2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
  • 3State Key Laboratory of Transient Optics and Photonics, Xi′an Institute of Optics and Precision Mechanics of CAS, Xi′an 710119, Shaanxi, China
  • show less
    References(44)

    [1] [1] ZHANG X D, FOURNIER G R, GRAY D J. Interpretation of scattering by oceanic particles around 120 degrees and its implication in ocean color studies[J]. Optics Express, 2017, 25(4): A191-A199.

    [2] [2] MOBLEY C. Light and water: Radiative transfer in natural waters[M].San Diego: Academic Press,1994.

    [5] [5] MEGIE G. Laser remote sensing: Fundamentals and applications[J]. Eos, Transactions American Geophysical Union, 1985, 66(40): 686.

    [13] [13] LIU Q, LIU B Y, WU S H, et al. Design of the ship-borne multi-wavelength polarization oceanLiDAR system and measurement of seawater optical properties[J]. EPJ Web of Conferences, 2020, 237: 07007.

    [14] [14] CHURNSIDE J H, WILSON JJ, TATARSKII V V. Airborne LiDAR for fisheries applications[J]. Optical Engineering, 2001, 40: 406-414.

    [15] [15] LI X L, CHEN Y H, JIANG J B, et al. An oceanographicLiDAR with variable field-of-view for measuring optical properties of water[C]//2015 International Conference on Optoelectronics and Microelectronics (ICOM). Changchun, China. IEEE, 2015: 96-100.

    [16] [16] MOLCHANOV P A,CONTARINO V M,CONCANNON B M,et al. Nanosecond gated PMT for LiDAR-RADAR applications[C]//Infrared and Photoelectronic Imagers and Detector Devices Ⅱ. San Diego, California, United States: SPIE Optics + Photonics,2006:62 940H.

    [17] [17] HOGE F E, SWIFT R N, FREDERICK E B. Water depth measurement using an airborne pulsed neon laser system[J]. Applied Optics, 1980, 19(6): 871-883.

    [18] [18] YANG G, TIAN Z, BI Z, et al. Measurement of the attenuation coefficient in fresh water using the adjacent frame difference method[J]. Photonics. 2022, 9(10): 713.

    [19] [19] GARY C G,MARK W B,PAUL E L. New capabilities of the“SHOALS”airborne LiDAR bathymeter[J]. Remote Sensing of Environment, 2000, 73(2): 247-255.

    [22] [22] LIU Z S, MA S, WANG X, et al. Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographicLiDAR[J]. Journal of Ocean University of China, 2008, 7(1): 108-112.

    [27] [27] SHANGGUAN M J, YANG Z F, LIN Z F, et al.Compact long-range single-photon underwater LiDAR with high spatial-temporal resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1501905.

    [28] [28] HAIR J W, HOSTETLER C A, COOK A L, et al. Airborne high spectral resolution LiDAR for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.

    [29] [29] CHURNSIDE J H, HAIR J W, HOSTETLER C A, et al. Ocean backscatter profiling using high-spectral-resolutionLiDAR and a perturbation retrieval[J]. Remote Sensing, 2018, 10(12): 2003.

    [32] [32] HOSTETLER C A, BEHRENFELD M J, HU Y X, et al. Spaceborne LiDAR in the study of marine systems[J]. Annual Review of Marine Science, 2018, 10: 121-147.

    [37] [37] HAIR J, HOSTETLER C, HU Y X, et al. Combined atmospheric and ocean profiling from an airborne high spectral resolutionLiDAR[J]. EPJ Web of Conferences, 2016, 119: 22001.

    [38] [38] ZHOU Y D, LIU D, XU P T, et al. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution LiDAR[J]. Optics Express, 2017, 25(10): 11813-11826.

    [41] [41] ZHOU Y D, CHEN W B, LIU D. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution LiDAR[J]. Research, 2023, 6: 201.

    [43] [43] CHEN B W, SHI S, GONG W, et al. True-color three-dimensional imaging and target classification BASED on hyperspectralLiDAR[J]. Remote Sensing, 2019, 11(13): 1541.

    [44] [44] SUN J, SHI S, WANG L C, et al. Optimizing LUT-based inversion of leaf chlorophyll from hyperspectral LiDAR data: Role of cost functions and regulation strategies[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102602.

    [45] [45] FARAFONOV V G, USTIMOV V I, PROKOPJEVA M S, et al. Light scattering by small particles: An ellipsoidal model that uses a quasistatic approach[J]. Optics and Spectroscopy, 2018, 125(6): 971-976.

    [47] [47] HANSEN J E, TRAVIS L D. Light scattering in planetary atmospheres[J]. Space Science Reviews, 1974, 16(4): 527-610.

    [49] [49] AZZAM R M. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal[J]. Optics Letters, 1978, 2(6): 148.

    [50] [50] BEARDSLEY J. Mueller scattering matrix of sea water[J]. Journal of the Optical Society of America (1917-1983), 1968, 58(1): 52.

    [51] [51] VOSS K J, FRY E S. Measurement of the Mueller matrix for ocean water[J]. Applied Optics, 1984, 23(23): 4427-4439.

    [53] [53] KATTAWAR G W, PLASS G N, GUINN JA, Jr. Monte Carlo calculations of the polarization of radiation in the earth′s atmosphere-ocean system[J]. Journal of Physical Oceanography, 1973, 3(4): 353-372.

    [54] [54] CHAMI M. Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C05026.

    [55] [55] CHAMI M, SANTER R, DILLIGEARD E. Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: Polarization properties of suspended matter for remote sensing[J]. Applied Optics, 2001, 40(15): 2398-2416.

    [56] [56] COLLISTER B L, ZIMMERMAN R C, SUKENIK C I, et al. Remote sensing of optical characteristics and particle distributions of the upper ocean using shipboardLiDAR[J]. Remote Sensing of Environment, 2018, 215: 85-96.

    [57] [57] CHEN P, JAMET C, ZHANG Z H, et al. Vertical distribution of subsurface phytoplankton layer in South China Sea using airborne LiDAR[J]. Remote Sensing of Environment, 2021, 263: 112567.

    [58] [58] CHURNSIDE J H, MARCHBANKS R D, VAGLE S, et al. Stratification, plankton layers, and mixing measured by airborne LiDAR in the Chukchi and Beaufort seas[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2020, 177: 104742.

    [60] [60] YUAN D P, MAO Z H, CHEN P, et al. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric oceanLiDAR[J]. Optics Express, 2022, 30(16): 29564-29583.

    [62] [62] LEATHERS R A, DOWNES T V, DAVIS C O, et al. Monte carlo radiative transfer simulations for ocean optics: A practical guide[M]. Washington, DC: Naval Research Laboratory,2004.

    [63] [63] KATSEV I L, ZEGE E P, PRIKHACH A S, et al.Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems[J]. Journal of the Optical Society of America A, 1997, 14(6): 1338-1346.

    [65] [65] LEE Z P, CARDER K L, ARNONE R A. Deriving inherent opticalproperties from water color: A multiband quasi-analytical algorithm for optically deep waters[J]. Applied Optics, 2002, 41(27): 5755-5772.

    [67] [67] HE H X, LIU Q, TANG J W, et al. Validation of the polarized Monte Carlo model of shipborne oceanic LiDAR returns[J]. Optics Express, 2023, 31(26): 43250-43268.

    [75] [75] LIU Q, CUI X Y, CHEN W B, et al. Asemianalytic Monte Carlo radiative transfer model for polarized oceanic LiDAR: Experiment-based comparisons and multiple scattering effects analyses[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106638.

    [76] [76] LIU D, XU P T, ZHOU Y D, et al.LiDAR remote sensing of seawater optical properties: Experiment and Monte Carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9489-9498.

    [79] [79] BEHRENFELD M J, HU Y X, HOSTETLER C A, et al.Space-based LiDAR measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4360.

    [80] [80] BISSON K M, BOSS E, WERDELL P J, et al. Particulate backscattering in the global ocean: A comparison of independent assessments[J]. Geophysical Research Letters, 2021, 48(2): e2020GL090909.

    [82] [82] LACOUR L, LAROUCHE R, BABIN M.In situ evaluation of spaceborne CALIOP LiDAR measurements of the upper-ocean particle backscattering coefficient[J]. Optics Express, 2020, 28(18): 26989-26999.

    [83] [83] ZHENG H Y, MA Y, HUANG J, et al. Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting LiDAR[J]. Optics Express, 2022, 30(18): 33320-33336.

    [88] [88] DU L, JIN Z L, CHEN B W, et al. Application of hyperspectralLiDAR on 3D chlorophyll-nitrogen mapping of rohdea Japonica in laboratory[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9667-9679.

    [89] [89] BI K Y, XIAO S F, GAO S, et al. Estimating vertical chlorophyll concentrations in maize in different health states using hyperspectral LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8125-8133.

    Tools

    Get Citation

    Copy Citation Text

    Gao Chenyuan, Lei Shaohua, Jin Qiu, Li Guangying. Research and Progress on Water LiDAR for Optical Detection[J]. APPLIED LASER, 2025, 45(1): 209

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 24, 2024

    Accepted: Apr. 17, 2025

    Published Online: Apr. 17, 2025

    The Author Email: Lei Shaohua (shaohualei@nhri.cn)

    DOI:10.14128/j.cnki.al.20254501.209

    Topics