Infrared Technology, Volume. 46, Issue 10, 1162(2024)

Low-light Image Enhancement Based on Detail Preservation and Brightness Fusion

Qun NIU1, Lixia SHI1、*, Jinsong WANG1,2, and Zhuo TANG1
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130012, China
  • 2Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
  • show less
    References(14)

    [1] [1] WANG L, WU B, WANG X, et al. Endoscopic image luminance enhancement based on the inverse square law for illuminance and retinex[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18(4): e2396.

    [5] [5] WANG W, WU X, YUAN X, et al. An experiment-based review of low-light image enhancement methods[J]. IEEE Access, 2020, 8: 87884-87917.

    [9] [9] Lore K G, Akintayo A, Sarkar S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.

    [12] [12] GAO Y, HU H M, LI B, et al. Naturalness preserved nonuniform illumination estimation for image enhancement based on retinex[J]. IEEE Transactions on Multimedia, 2017, 20(2): 335-344.

    [13] [13] LI C, TANG S, YAN J, et al. Low-light image enhancement via pair of complementary gamma functions by fusion[J]. IEEE Access, 2020, 8: 169887-169896.

    [17] [17] Zuiderveld K. Contrast limited adaptive histogram equalization[J]. Graphics Gems, 1994: 474-485.

    [18] [18] Petro A B, Sbert C, Morel J M. Multiscale retinex[J]. Image Processing On Line, 2014: 71-88. https://doi.org/10.5201/ipol.2014.107https://doi.org/10.5201/ipol.2014.107.

    [19] [19] GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.

    [20] [20] DONG X, PANG Y, WEN J. Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia and Expo, 2011: DOI: 10.1109/ICME.2011.601210710.1109/ICME.2011.6012107.

    [21] [21] YING Z, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[J]. arXiv preprint arXiv, 1711.00591, 2017.

    [22] [22] Loh Y P, Chan C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42.

    [23] [23] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.

    [24] [24] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.

    [26] [26] ZHOU D, QIAN Y, MA Y, et al. Low illumination image enhancement based on multi-scale cycle GAN with deep residual shrinkage[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2383-2395.

    Tools

    Get Citation

    Copy Citation Text

    NIU Qun, SHI Lixia, WANG Jinsong, TANG Zhuo. Low-light Image Enhancement Based on Detail Preservation and Brightness Fusion[J]. Infrared Technology, 2024, 46(10): 1162

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 19, 2023

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email: Lixia SHI (custslx@cust.edu.cn)

    DOI:

    Topics