Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1401001(2024)
Atmospheric Turbulence Degradation Image Restoration Based on Grid Network
Fig. 9. Example images. (a) Degraded image of atmospheric turbulence; (b) ideal image
Fig. 11. Experimental results of atmospheric turbulence degradation image restoration. (a) Input images; (b) TSR-WGAN; (c) MPRNet; (d) DeblurGANv2; (e) GridDehazeNet; (f) proposed algorithm; (g) ground-truth
Fig. 12. Comparison experimental results of atmospheric turbulence degradation image restoration at real scene. (a) Input image; (b) DeblurGANv2; (c) GridDehazeNet; (d) proposed algorithm
Fig. 14. Experimental results using different modules. (a) Input image; (b) baseline; (c) baseline+spatial attention block; (d) baseline+dilated convolutions; (e) baseline+dilated convolutions+spatial attention block; (f) ground-truth
|
|
|
Get Citation
Copy Citation Text
Zhi Cheng, Zaohui Deng, Liping Gao, Yin Tao, Chao Mu, Lili Du. Atmospheric Turbulence Degradation Image Restoration Based on Grid Network[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1401001
Category: Atmospheric Optics and Oceanic Optics
Received: Oct. 23, 2023
Accepted: Dec. 21, 2023
Published Online: Jul. 17, 2024
The Author Email: Zhi Cheng (cz_ganen108@126.com)
CSTR:32186.14.LOP232347