Chinese Journal of Lasers, Volume. 43, Issue 11, 1102007(2016)
Numerical Simulation on Deformation Velocity of 316L Stainless Steel Target Driven by Intense Lasers
[1] [1] Fan Jinrong, Huang Shu, Zhou Jianzhong, et al. Analysis and expectation of microscale laser shock forming[J]. Laser & Optoelectronics Progress, 2012, 49(1): 010003.
[2] [2] Zhang X Q, She J P, Li S Z, et al. Simulation on deforming progress and stress evolution during laser shock forming with finite element method[J]. Journal of Materials Processing Technology, 2015(220): 27-35.
[3] [3] Nagarajan B, Castagne S, Wang Z K, et al. Influence of plastic deformation in flexible pad laser shock forming-experimental and numerical analysis[J]. International Journal of Material Forming, 2015: 1-15.
[5] [5] Chen Rong, Lu Fangyun, Lin Yuliang, et al. A critical review of split Hopkinson pressure bar technique[J]. Advances in Mechanics, 2009, 39(5): 576-587.
[6] [6] Tong Yanqun, Yao Hongbing, Zhang Yongkang, et al. Experimental research of high-speed plate deformation process shocked by strong and short pulsed laser[J]. Chinese J Lasers, 2011, 38(2): 0203007.
[7] [7] Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminum-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour[J]. Journal of Materials Science, 1998, 33(6): 1421-1429.
[8] [8] Sundar R, Kumar H, Kaul R, et al. Studies on laser peening using different sacrificial coatings[J]. Surface Engineering, 2012, 28(8): 564-568.
[9] [9] Zhang Xingquan, Zhang Yan, Duan Shiwei, et al. Numerical simulation of dynamic response of round rod subjected to laser shocking[J]. Chinese J Lasers. 2015, 42(9): 0903009.
[10] [10] Dahl C. Laser-delayed double shock-wave generation in water-confinement regime[J]. Journal of Laser Applications, 2015, 27(5): 972-978.
[11] [11] Gu Yongyu, Zhang Yongkang, Zhang Xingquan, et al. Theoretical study on the influence of the overlay on the pressure of laser shock wave in photomechanics[J]. Acta Physica Sinica, 2006, 55(11): 5885-5891.
[12] [12] Ding J, Kang G Z, Zhu Y L, et al. Finite element analysis on bending fretting fatigue of 316L stainless steel considering ratchetting and cyclic hardening[J]. International Journal of Mechanical Sciences, 2014, 86(6): 26-33.
[13] [13] Zhang X Q, Li H, Duan S W, et al. Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J]. Surface & Coatings Technology, 2015(280): 163-173.
[14] [14] Peyre P, Sollier A, Chaieb I, et al. FEM simulation of residual stresses induced by laser peening[J]. The European Physical Journal Applied Physics, 2003, 23(2): 83-88.
[15] [15] Zhang Qinglai, Wang Rong, Hong Yanxin, et al. Study on laser shock forming and fracture behavior of metal sheet[J]. Chinese J Lasers, 2014, 41(4): 0403010.
Get Citation
Copy Citation Text
Ji Kankan, Zhang Xingquan, Deng Lei, Huang Zhilai, Duan Shiwei, Qi Xiaoli, Chen Bin. Numerical Simulation on Deformation Velocity of 316L Stainless Steel Target Driven by Intense Lasers[J]. Chinese Journal of Lasers, 2016, 43(11): 1102007
Category: laser manufacturing
Received: Jul. 4, 2016
Accepted: --
Published Online: Nov. 10, 2016
The Author Email: Kankan Ji (jkk114f@163.com)