Laser & Optoelectronics Progress, Volume. 56, Issue 15, 151006(2019)

Hyperspectral Image Classification Based on Residual Dense Network

Xiangpo Wei*, Xuchu Yu, Xiong Tan, and Bing Liu
Author Affiliations
  • Information Engineering University, Zhengzhou, Henan 450001, China
  • show less
    Figures & Tables(16)
    Structure of residual block
    Structure of dense block (l=3)
    Illustration of residual dense block
    Illustration of residual dense network model for hyperspectral image classification
    Classification accuracies of models with different kernel numbers
    Classification accuracies of models with different batch sizes
    Classification maps for Indian Pines dataset
    Classification maps of University of Pavia dataset
    Classification maps of Salinas dataset
    Classification accuracies for different training sample numbers
    • Table 1. Numbers of Indian Pines data samples

      View table

      Table 1. Numbers of Indian Pines data samples

      Number12345678910
      CategoryCorn-notillCorn-mintillGrass-pastureGrass-treesHay-windowedSoybean-notillSoybean-mintillSoybean-cleanWoodsTotal
      Number oftraining sample2002002002002002002002002001800
      Number oftesting sample1228630283530278772225539310657434
    • Table 2. Numbers of University of Pavia data samples

      View table

      Table 2. Numbers of University of Pavia data samples

      Number123456789
      CategoryAsphaltMeadowsGravelTreesSheetsBare SoilBitumenBricksShadowsTotal
      Number of training sample2002002002002002002002002001800
      Number of testing sample64311844918992864114548291130348274740976
    • Table 3. Numbers of Salinas data samples

      View table

      Table 3. Numbers of Salinas data samples

      NumberCategoryNumber of training sampleNumber of testing sample
      1Baocoli_weeds_12001809
      2Baocoli_weeds_22003526
      3Fallow2001776
      4Fallow_rough_plow2001194
      5Fallow_smooth2002478
      6Stubble2003759
      7Celery2003379
      8Grapes_untrained20011071
      9Soil_vinyard_develop2006003
      10Corn_senesced_weeds2003078
      11Lettuce_romaine_4 weeks200868
      12Lettuce_romaine_5 weeks2001727
      13Lettuce_romaine_6 weeks200716
      14Lettuce_romaine_7 weeks200870
      15Vinyard_untrained2007068
      16Vinyard_vertical_trellis2001607
      Total320050929
    • Table 4. Classification accuracies (mean value±variance) of experimental datasets

      View table

      Table 4. Classification accuracies (mean value±variance) of experimental datasets

      DatasetCriteria /%SVMCNNResNetDenseNetResDenNet
      OA86.82±1.1296.09±0.4697.79±0.4797.92±0.1198.71±0.01
      INAA87.60±0.4396.28±0.3197.90±0.4598.09±0.1398.94±0.01
      Kappa84.70±1.3495.44±0.6397.42±0.6397.56±0.1598.48±0.02
      OA89.87±1.2597.33±0.0398.49±0.1998.58±0.0999.31±0.01
      UPAA89.91±0.5196.55±0.0498.26±0.1698.43±0.0799.08±0.02
      Kappa87.32±1.4696.48±0.0698.01±0.3498.13±0.1699.08±0.01
      OA89.66±1.1892.84±0.5296.39±0.5496.52±0.1597.91±0.02
      SAAA93.62±0.4796.44±0.2498.16±0.3198.13±0.0998.90±0.01
      Kappa88.56±1.2692.05±0.3595.99±0.4296.13±0.1797.68±0.03
    • Table 5. Classification accuracies (mean value±variance) of Salinas dataset

      View table

      Table 5. Classification accuracies (mean value±variance) of Salinas dataset

      DatasetCriteria/%Model based on INModel based on UPModel self-trained
      OA96.75±0.1397.21±0.1097.91±0.02
      SAAA98.52±0.0198.67±0.0198.90±0.01
      Kappa96.38±0.1696.90±0.1297.68±0.03
    • Table 6. Training and testing time for different methodss

      View table

      Table 6. Training and testing time for different methodss

      DatasetTypeCNNResNetDenseNetResDenNet
      INTrain132.32231.49136.07249.43
      Test1.986.563.914.82
      UPTrain94.87156.80192.23187.68
      Test12.2914.4417.0816.89
      SATrain173.84300.37354.32272.12
      Test7.269.2314.2715.09
    Tools

    Get Citation

    Copy Citation Text

    Xiangpo Wei, Xuchu Yu, Xiong Tan, Bing Liu. Hyperspectral Image Classification Based on Residual Dense Network[J]. Laser & Optoelectronics Progress, 2019, 56(15): 151006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 3, 2019

    Accepted: Mar. 6, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Xiangpo Wei (13526635671@163.com)

    DOI:10.3788/LOP56.151006

    Topics