Chinese Journal of Lasers, Volume. 47, Issue 10, 1007002(2020)

Fast Super-Resolution Fluorescence Microscopy Imaging with Low Signal-to-Noise Ratio Based on Deep Learning

Xiao Kang1, Tian Lijun1, and Wang Zhongyang2
Author Affiliations
  • 1Physics Department, College of Science, Shanghai University, Shanghai 200444, China
  • 2Research Center of Quantum Engineering and Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • show less
    References(26)

    [2] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [3] Zhu L, Zhang W, Elnatan D et al. Faster STORM using compressed sensing[J]. Nature Methods, 9, 721-723(2012).

    [4] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458(2018).

    [6] Dempsey G T, Vaughan J C, Chen K H et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 8, 1027(2011).

    [8] Wang H, Rivenson Y, Jin Y et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103(2019).

    [10] Zhu Y, Shi J H, Wu X Y et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system[J]. Applied Physics B, 126, 21(2020).

    [11] Zhang K, Zuo W M, Chen Y J et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 26, 3142-3155(2017).

    [13] Hirsch M, Wareham R J. Martin-Fernandez M L, et al. A Stochastic model for electron multiplication charge-coupled devices-from theory to practice[J]. Plos One, 8, e53671(2013).

    [14] Plakhotnik T, Chennu A, Zvyagin A V. Statistics of single-electron signals in electron-multiplying charge-coupled devices[J]. IEEE Transactions on Electron Devices, 53, 618-622(2006).

    [15] Huang G, Liu Z. Laurens V D M, et al. Densely connected convolutional networks[C]∥2017 IEEE conference on Computer Vision and Pattern Recognition. July 21-26, 2017. Honolulu, Hi, USA., 17355312(2017).

    [16] Sun L, Shi J H, Wu X Y et al. Photon-limited imaging through scattering medium based on deep learning[J]. Optics Express, 27, 33120-33134(2019).

    [17] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [18] Li S, Deng M, Lee J et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 5, 803-813(2018).

    [19] Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering[C]∥Proceedings of the 24th international conference on Machine learning-ICML'07. June 20-24, 2007. Corvalis, Oregon., 791-798(2007).

    [20] Hinton G E, Srivastava N, Krizhevsky A et al. arXiv:1207[2020-04-28]. 0580 https:∥arxiv., org/abs/1207, 0580(2012).

    [21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778(2016).

    [22] Huang F, Schwartz S L, Byars J M et al. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging[J]. Biomedical Optics Express, 2, 1377-1393(2011).

    [23] Kingma D P. arXiv:1412[2020-04-28]. 6980 https:∥arxiv., org/abs/1412, 6980(2014).

    [24] Abadi M, Agarwal A, Barham P et al. arXiv:1603[2020-04-28]. 04467 https:∥arxiv., org/abs/1603, 04467(2016).

    [25] Hou Y K, Zhao C X, Yang D Y et al. Comments on “image denoising by sparse 3-D transform-domain collaborative filtering”[J]. IEEE Transactions on Image Processing, 20, 268-270(2011).

    [26] Holden S J, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 8, 279-280(2011).

    Tools

    Get Citation

    Copy Citation Text

    Xiao Kang, Tian Lijun, Wang Zhongyang. Fast Super-Resolution Fluorescence Microscopy Imaging with Low Signal-to-Noise Ratio Based on Deep Learning[J]. Chinese Journal of Lasers, 2020, 47(10): 1007002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Apr. 28, 2020

    Accepted: --

    Published Online: Oct. 9, 2020

    The Author Email:

    DOI:10.3788/CJL202047.1007002

    Topics