Journal of Innovative Optical Health Sciences, Volume. 17, Issue 5, 2342001(2024)

Effect of sodium nitroprusside on the microrheological properties of red blood cells in different media

Petr Ermolinskiy1、*, Matvey Maksimov1、**, Andrei Lugovtsov1、***, Alexey Muravyov2、****, Irina Tikhomirova3、*****, and Alexander Priezzhev1、******
Author Affiliations
  • 1Faculty of Physics, M.V. Lomonosov Moscow State University Moscow 119991, Russia
  • 2Faculty of Physical Education, K.D. Ushinsky Yaroslavl State Pedagogical University, Yaroslavl 150000, Russia
  • 3Faculty of Natural Sciences, K.D. Ushinsky Yaroslavl State Pedagogical University, Yaroslavl 150000, Russia
  • show less
    References(33)

    [1] M. Diez-Silva, M. Dao, J. Han, C. Lim, S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bulletin, 35, 382-388(2010).

    [2] C. Geers, G. Gros. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol. Rev., 80, 681-715(2000).

    [3] A. Gillespie, A. Doctor. Red blood cell contribution to hemostasis. Front. Pediatr., 9, 1-9(2021).

    [4] L. Anderson, I. Brodsky, N. Mangalmurti. The evolving erythrocyte: Red blood cells as modulators of innate immunity. J. Immunol., 201, 1343-1351(2018).

    [5] O. Baskurt, B. Neu, H. Meiselman. Red Blood Cell Aggregation(2012).

    [6] M. W. Rampling, H. J. Meiselman, B. Neub, O. K. Baskurt. Influence of cell-specific factors on red blood cell aggregation. Biorheology, 41, 91-112(2004).

    [7] K. Lee, A. Danilina, A. Potkin, M. Kinnunen, A. Priezzhev, I. Meglinski. RBC aggregation dynamics in autologous plasma and serum studied with double-channel optical tweezers. Proc. SPIE, 9917, 991704(2016).

    [8] A. Muravyov, I. Tikhomirova. Role of molecular signaling pathways in changes of red blood cell deformability. Clin. Hemorheol. Microcirc., 53, 45-59(2012).

    [9] A. Muravyov. The role of gaseous mediators (CO, NO and H2S) in the regulation of blood circulation: Analysis of the participation of blood cell microrheology [in Russian]. Reg. Blood Circ. Microcirc., 20, 91-99(2021).

    [10] N. Tran, T. Garcia, M. Aniqa, S. Ali, A. Ally, S. Nauli. Endothelial nitric oxide synthase (enos) and the cardiovascular system: In physiology and in disease states. Am. J. Biomed. Sci. Res., 15, 153-177(2022).

    [11] L. Ignarro, C. Napoli, J. Loscalzo. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide — an overview. Circ. Res., 90, 21-8(2002).

    [12] M. Cortese-Krott, M. Kelm. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?. Redox Biol., 2, 251-258(2013).

    [13] A. Muravyov, P. Avdonin, I. Tikhomirova, S. Bulaeva, J. Malysheva. Effects of gasotransmitters on membrane elasticity and microrheology of erythrocytes. Biochem. Moscow Suppl. Ser. A, 13, 225-232(2019).

    [14] M. Bor-Kucukatay, R. Wenby, H. Meiselman, O. Baskurt. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol., 284, H1577-H1584(2003).

    [15] P. Ulker, N. Yaras, C. Celik-Ozenci, H. Meiselman, O. Baskurt. Shear stress activation of nitric oxide synthase and increased no levels in human red blood cells. Nat. Preced., 5, 1-13(2010).

    [16] A. Mozar, P. Connes, B. Collins, H.-D. MD, M. Romana, N. Lemonne, W. Bloch, M. Grau. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc., 64, 728-736(2015).

    [17] A. Pribush, D. Zilberman-Kravits, N. Meyerstein. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J., 36, 85-94(2007).

    [18] A. N. Semenov, A. Lugovtsov, P. Ermolinskiy, K. Lee, A. V. Priezzhev. Problems of red blood cell aggregation and deformation assessed by laser tweezers, diffuse light scattering and laser diffractometry. Photonics, 9, 1-19(2022).

    [19] M. Uyuklu, M. Cengiz, P. Ulker, T. Hever, J. Tripette, P. Connes, N. Nemeth, H. Meiselman, O. Baskurt. Effects of storage duration and temperature of human blood on red cell deformability and aggregation. Clin. Hemorheol. Microcirc., 41, 269-278(2009).

    [20] A. V. Priezzhev, K. Lee, N. N. Firsov, J. Lademann, V. V. Tuchin. Handbook of Optical Biomedical Diagnostics, 2, 5-36(2016).

    [21] S. Shin, Y. Yang, J. Suh. Measurement of erythrocyte aggregation in a microchip stirring system by light transmission. Clin. Hemorheol. Microcirc., 41, 197-207(2009).

    [22] J. Kim, H. Chung, M. Jo, B. Lee, A. Karimi, S. Shin. The role of critical shear stress on acute coronary syndrome. Clin. Hemorheol. Microcirc., 55, 101-109(2013).

    [23] P. B. Ermolinskiy, A. N. Semenov, A. E. Lugovtsov, C. Poeschl, U. Windberger, E. Kaliviotis, A. V. Priezzhev. Effect of different macromolecules on viscous and microrheologic properties of blood at various temperatures. Proc. SPIE, 11065, 1106507-1-1106507-5(2019).

    [24] J. Mauer, M. Peltomäki, S. Poblete, G. Gompper, D. Fedosov. Static and dynamic light scattering by red blood cells: A numerical study. PLoS ONE, 12, 1-19(2017).

    [25] O. Baskurt, M. Hardeman, M. Uyuklu, P. Ulker, M. Cengiz, N. Nemeth, S. Shin, T. Alexy, H. Meiselman. Comparison of three commercially available ektacytometers with different shearing geometries. Biorheology, 46, 251-264(2009).

    [26] J. Gounley, Y. Peng. Computational modeling of membrane viscosity of red blood cells. Commun. Comput. Phys., 17, 1073-1087(2015).

    [27] N. N. Firsov, A. V. Priezzhev, N. V. Klimova, A. Y. Tyurina. Fundamental laws of the deformational behavior of erythrocytes in shear flow. J. Eng. Phys. Thermophys., 79, 118-124(2006).

    [28] J. Grice. Graphical exploratory data analysis. Technometrics, 31, 116-117(2012).

    [29] K. Lee, E. Shirshin, N. Rovnyagina, F. Yaya, Z. Boujja, A. Priezzhev, C. Wagner. Dextran adsorption onto red blood cells revisited: Single cell quantification by laser tweezers combined with microfluidics. Biomed. Opt. Express, 9, 2755-2764(2018).

    [30] E. Nader, M. Romana, N. Guillot, R. Fort, E. Stauffer, N. Lemonne, Y. Garnier, S. C. Skinner, M. Etienne-Julan, M. Robert, A. Gauthier, G. Cannas, S. Antoine-Jonville, B. Tressières, M.-D. Hardy-Dessources, Y. Bertrand, C. Martin, C. Renoux, P. Joly, M. Grau, P. Connes. Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front. Immunol., 11, 1-13(2020).

    [31] L. Kuck, J. N. Peart, M. J. Simmonds. Calcium dynamically alters erythrocyte mechanical response to shear. Biochim. Biophys. Acta Mol. Cell Res., 1867, 118802(2020).

    [32] V. Barodka, J. G. Mohanty, A. K. Mustafa, L. Santhanam, A. Nyhan, A. K. Bhunia, G. Sikka, D. Nyhan, D. E. Berkowitz, J. M. Rifkind. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion, 54, 434-444(2013).

    [33] N. Cilek, E. Ugurel, E. Goksel, O. Yalcin. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J. Cell. Physiol.(2023).

    Tools

    Get Citation

    Copy Citation Text

    Petr Ermolinskiy, Matvey Maksimov, Andrei Lugovtsov, Alexey Muravyov, Irina Tikhomirova, Alexander Priezzhev. Effect of sodium nitroprusside on the microrheological properties of red blood cells in different media[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2342001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 28, 2023

    Accepted: Oct. 22, 2023

    Published Online: Aug. 8, 2024

    The Author Email: Petr Ermolinskiy (ermolinskiy.pb15@physics.msu.ru), Matvey Maksimov (madoway@yandex.ru), Andrei Lugovtsov (anlug1@gmail.com), Alexey Muravyov (alexei.47@mail.ru), Irina Tikhomirova (tikhom-irina@yandex.ru), Alexander Priezzhev (avp2@mail.ru)

    DOI:10.1142/S1793545823420014

    Topics