Opto-Electronic Engineering, Volume. 52, Issue 7, 250055(2025)

A few-shot optical fingerprint liveness detection method diagram of the overall framework

Congyuan Xu1,2、*, Jun Yang1, Panpan Li1, and Kun Deng1
Author Affiliations
  • 1College of Artificial Intelligence, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • 2School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(16)
    Diagram of the few-shot detection task
    Diagram of the overall framework
    Diagram of the feature encoding module structure
    Diagram of the feature matching module structure
    Ablation study results on the LivDet 2013 dataset
    Ablation study results on the LivDet 2015 dataset
    • Table 1. Comparison of three transforms in fingerprint image processing

      View table
      View in Article

      Table 1. Comparison of three transforms in fingerprint image processing

      ItemFourier transformDiscrete cosine transformWavelet transform
      Representation formGlobal frequencyGlobal frequencyMulti-scale (local + global)
      Output typeComplexRealComplex or real (depends on implementation)
      Energy concentrationModerateHighModerate (depends on wavelet bases)
      Spatial localizationPoorPoorStrong
      Computational complexityRelatively highRelatively lowHigh
      Targeted feature propertiesGlobal frequency analysisImage compression, detail enhancementMulti-resolution feature extraction
      Typical applicationsFrequency domain analysisLocal texture discriminationMulti-scale feature modeling
    • Table 2. Dataset sample distribution

      View table
      View in Article

      Table 2. Dataset sample distribution

      DatasetSensorTrain setTest set
      LiveSpoofLiveSpoof
      LivDet 2013Biometrika1000100010001000
      CrossMatch1250100012501000
      Italdata1000100010001000
      Swipe122097911531000
      Total4470397944034000
      LivDet 2015Biometrika1000100010001500
      CrossMatch1510147310001500
      GreenBit4440449510001500
      Total6950696830004500
    • Table 3. Values of hyperparameters

      View table
      View in Article

      Table 3. Values of hyperparameters

      HyperparameterValue
      Batch size32
      Epochs200
      Learning rate0.001
      Number of support samples K5, 10
      Feature matching parameter M4
      Feature matching parameter L2
      Feature matching parameter C2
      Number of layers in MLP module3
      Number of nodes in MLP module64
    • Table 4. Detection results on the LivDet 2013 dataset (K=5)

      View table
      View in Article

      Table 4. Detection results on the LivDet 2013 dataset (K=5)

      SensorAPCER/%BPCER/%ACER/%ACC/%
      Biometrika0.500.400.4599.55
      CrossMatch0.400.400.4099.60
      Italdata0.300.200.2599.75
      Swipe0.200.430.3299.67
      Overall0.350.360.3699.64
    • Table 5. Detection results on the LivDet 2013 dataset (K=10)

      View table
      View in Article

      Table 5. Detection results on the LivDet 2013 dataset (K=10)

      SensorAPCER/%BPCER/%ACER/%ACC/%
      Biometrika0.300.300.3099.70
      CrossMatch0.200.320.2699.73
      Italdata0.200.100.1599.85
      Swipe0.100.170.1499.86
      Overall0.200.230.2199.79
    • Table 6. Detection results on the LivDet 2015 dataset (K=5)

      View table
      View in Article

      Table 6. Detection results on the LivDet 2015 dataset (K=5)

      SensorAPCER/%BPCER/%ACER/%ACC/%
      Biometrika0.471.100.7899.28
      CrossMatch0.800.700.7599.24
      GreenBit0.600.600.6099.40
      Overall0.620.800.7199.31
    • Table 7. Detection results on the LivDet 2015 dataset (K=10)

      View table
      View in Article

      Table 7. Detection results on the LivDet 2015 dataset (K=10)

      SensorAPCER/%BPCER/%ACER/%ACC/%
      Biometrika0.330.600.4799.56
      CrossMatch0.400.500.4599.56
      GreenBit0.270.600.4399.60
      Overall0.330.570.4599.57
    • Table 8. Test comparison results between the proposed detection method and related works

      View table
      View in Article

      Table 8. Test comparison results between the proposed detection method and related works

      MethodDatasetFew-shotACER/%
      DeFraudNet (2020) [27]LivDet 2013No0.28
      DeFraudNet (2020) [27]LivDet 2015No0.84
      DRBM + DBM (2020) [28]LivDet 2013No3.60
      ALDRN (2020) [29]LivDet 2013No2.96
      LivDet 2015No5.32
      Method based on Fisher vector (2021) [30]LivDet 2013No0.30
      LivDet 2015No1.46
      MFFFLD (2022) [31]LivDet 2013No0.96
      LivDet 2015No0.91
      HyFiPAD (2022) [32]LivDet 2013No2.88
      LivDet 2015No2.97
      ViT Unified (2023) [33]LivDet 2013No1.91
      LivDet 2015No0.48
      LFLDNet (2023) [34]LivDet 2015No2.20
      LFLDNet + CycleGAN (2023) [34]LivDet 2015No1.72
      Method based on Res-CNN (2024) [35]LivDet 2015No2.13
      MoSFPAD (2025) [36]LivDet 2013No0.22
      LivDet 2015No2.45
      Proposed method (K=5)LivDet 2013Yes0.36
      Proposed method (K=5)LivDet 2015Yes0.71
      Proposed method (K=10)LivDet 2013Yes0.21
      Proposed method (K=10)LivDet 2015Yes0.45
    • Table 9. Cross-sensor detection results on the LivDet 2013 dataset (K=10)

      View table
      View in Article

      Table 9. Cross-sensor detection results on the LivDet 2013 dataset (K=10)

      SensorAPCER/%BPCER/%ACER/%ACC/%
      Biometrika2.301.201.7598.25
      CrossMatch1.401.441.4298.58
      Italdata2.303.202.7597.25
      Swipe4.405.124.7695.22
      Overall2.602.752.6797.32
    • Table 10. Cross-sensor detection results on the LivDet 2015 dataset (K=10)

      View table
      View in Article

      Table 10. Cross-sensor detection results on the LivDet 2015 dataset (K=10)

      SensorAPCER/%BPCER/%ACER/%ACC/%
      Biometrika5.1311.408.2792.36
      CrossMatch4.609.507.0593.44
      GreenBit4.808.606.7093.68
      Overall4.849.837.3493.16
    Tools

    Get Citation

    Copy Citation Text

    Congyuan Xu, Jun Yang, Panpan Li, Kun Deng. A few-shot optical fingerprint liveness detection method diagram of the overall framework[J]. Opto-Electronic Engineering, 2025, 52(7): 250055

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Feb. 26, 2025

    Accepted: Apr. 25, 2025

    Published Online: Sep. 4, 2025

    The Author Email: Congyuan Xu (许聪源)

    DOI:10.12086/oee.2025.250055

    Topics