Acta Optica Sinica, Volume. 43, Issue 2, 0214001(2023)

Fiber Laser with Switchable Operating Modes Based on Graphene Oxide/Polystyrene Electro-Optic Modulator

Xiaoying Zhang1, Jianhua Chang1,2、*, Tengfei Dai1,2, Youpeng Su1, Xiang Liu1, and Haibin Ni1
Author Affiliations
  • 1School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • show less
    References(36)

    [1] Li H, Huang W, Pei W X et al. Continuous-wave 1.7 μm all-fiber gas Raman laser source[J]. Acta Optica Sinica, 41, 0314001(2021).

    [2] Dong W Q, Hao Q, Huang K et al. Single-pass optical parameter mid-infrared ultra-short pulse laser system based on all polarization-maintaining fiber laser[J]. Acta Optica Sinica, 41, 1236001(2021).

    [3] Han D D, Zhang J Y, Gao Q et al. Switchable multi-wavelength passively mode-locked all-fiber lasers[J]. Acta Optica Sinica, 41, 0506002(2021).

    [4] Dong Z K, Song Y R. Research progress of mode-locked fiber lasers based on saturable absorbers[J]. Chinese Journal of Lasers, 48, 0501006(2021).

    [5] Lu B L, Fang Y, Lü C Y et al. Single- and bound-state soliton mode-locked Er-doped fiber laser based on graphene/WS2 nanocomposites saturable absorber[J]. Infrared Physics & Technology, 121, 104024(2022).

    [6] Wang S K, Tu C R, Mahabadi S E J et al. Obtaining more energetic modelocked pulses from a SESAM-based fiber laser[J]. Optics Express, 28, 20345-20361(2020).

    [7] Zhang C X, Chen Y, Fan T J et al. Sub-hundred nanosecond pulse generation from a black phosphorus Q-switched Er-doped fiber laser[J]. Optics Express, 28, 4708-4716(2020).

    [8] Zhao F Y, Wang Y S, Wang Y G et al. Graphene oxide-COOH as a new saturable absorber for both Q-switching and mode-locking fiber lasers[J]. Chinese Optics Letters, 15, 101402(2017).

    [9] Baylam I, Cizmeciyan M N, Ozharar S et al. Femtosecond pulse generation with voltage-controlled graphene saturable absorber[J]. Optics Letters, 39, 5180-5183(2014).

    [10] Jin Y, Zhou L, Liang J et al. Electrochemically driven dynamic plasmonics[J]. Advanced Photonics, 3, 044002(2021).

    [11] Gao Y, Qin C B, Qiao Z X et al. Imaging and spectrum of monolayer graphene oxide in external electric field[J]. Carbon, 93, 843-850(2015).

    [12] Nair V, Kumar A, Subramaniam C. Exceptional photoconductivity of poly(3-hexylthiophene) fibers through in situ encapsulation of molybdenum disulfide quantum dots[J]. Nanoscale, 10, 10395-10402(2018).

    [13] Kovalchuk O, Uddin S, Lee S et al. Graphene capacitor-based electrical switching of mode-locking in all-fiberized femtosecond lasers[J]. ACS Applied Materials & Interfaces, 12, 54005-54011(2020).

    [14] Lee E J, Choi S Y, Jeong H et al. Active control of all-fibre graphene devices with electrical gating[J]. Nature Communications, 6, 6851(2015).

    [15] Baylam I, Özharar S, Kakenov N et al. Femtosecond pulse generation with voltage-controlled graphene saturable absorbers[M]. Binder R. Optical properties of graphene, 389-433(2016).

    [16] Ding Y, Li Q, Li J Y et al. Application of ultrafast lasers in the manufacture of passive optical waveguide devices: a review[J]. Chinese Journal of Lasers, 48, 0802020(2021).

    [17] Lian T H, Yang K D, Wang X B et al. Electro-absorption optical modulator based on graphene-buried polymer waveguides[J]. IEEE Photonics Journal, 12, 6601610(2020).

    [18] Osicka J, Mrlik M, Ilcikova M et al. Controllably coated graphene oxide particles with enhanced compatibility with poly(ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability[J]. Reactive and Functional Polymers, 148, 104487(2020).

    [19] Zhang K, Zhang W L, Choi H J. Facile fabrication of self-assembled PMMA/graphene oxide composite particles and their electroresponsive properties[J]. Colloid and Polymer Science, 291, 955-962(2013).

    [20] Hou Y G, Lü S H, Liu L P et al. High-quality preparation of graphene oxide via the Hummers' method: understanding the roles of the intercalator, oxidant, and graphite particle size[J]. Ceramics International, 46, 2392-2402(2020).

    [21] Chien C T, Li S S, Lai W J et al. Tunable photoluminescence from graphene oxide[J]. Angewandte Chemie, 51, 6662-6666(2012).

    [22] Al-Gaashani R, Najjar A, Zakaria Y et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J]. Ceramics International, 45, 14439-14448(2019).

    [23] Qiao Z X, Qin C B, Gao Y et al. Modulation of the optical transmittance in monolayer graphene oxide by using external electric field[J]. Scientific Reports, 5, 14441(2015).

    [24] Kostiuk D, Bodik M, Siffalovic P et al. Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy[J]. Journal of Raman Spectroscopy, 47, 391-394(2016).

    [25] Topsakal M, Gürel H H, Ciraci S. Effects of charging and electric field on graphene oxide[J]. The Journal of Physical Chemistry C, 117, 5943-5952(2013).

    [26] Gao Y, Qin C B, Qiao Z X et al. Observing and tuning the density distribution of localized states of monolayer graphene oxide by using external electric field[J]. Applied Physics Letters, 106, 131103(2015).

    [27] Xu C, Jin Y C, Yang L Z et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide[J]. Optics Express, 20, 22398-22405(2012).

    [28] Hanson G W. Dyadic Green's functions for an anisotropic, non-local model of biased graphene[J]. IEEE Transactions on Antennas and Propagation, 56, 747-757(2008).

    [29] Zitter R N. Saturated optical absorption through band filling in semiconductors[J]. Applied Physics Letters, 14, 73-74(1969).

    [30] Islam R, Papathanassiou A N, Chan-Yu-King R et al. On the sign of the relaxation activation energy for interfacial polarization in reduced graphene oxide-based nano-composites[J]. Applied Physics Letters, 109, 182901(2016).

    [31] Fernandes D E, Pereira R A M, Lannebère S et al. Experimental verification of ill-defined topologies and energy sinks in electromagnetic continua[J]. Advanced Photonics, 4, 035003(2022).

    [32] Baylam I, Balci O, Kakenov N et al. Graphene-gold supercapacitor as a voltage controlled saturable absorber for femtosecond pulse generation[J]. Optics Letters, 41, 910-913(2016).

    [33] Baylam I, Ozharar S, Kakenov N et al. Femtosecond pulse generation from a Ti3+: sapphire laser near 800 nm with voltage reconfigurable graphene saturable absorbers[J]. Optics Letters, 42, 1404-1407(2017).

    [34] Bogusławski J, Wang Y D, Xue H et al. Graphene actively mode‐locked lasers[J]. Advanced Functional Materials, 28, 1801539(2018).

    [35] Gladush Y, Mkrtchyan A A, Kopylova D S et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation[J]. Nano Letters, 19, 5836-5843(2019).

    [36] Gene J, Park N H, Jeong H et al. Optically controlled in-line graphene saturable absorber for the manipulation of pulsed fiber laser operation[J]. Optics Express, 24, 21301-21307(2016).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoying Zhang, Jianhua Chang, Tengfei Dai, Youpeng Su, Xiang Liu, Haibin Ni. Fiber Laser with Switchable Operating Modes Based on Graphene Oxide/Polystyrene Electro-Optic Modulator[J]. Acta Optica Sinica, 2023, 43(2): 0214001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jun. 15, 2022

    Accepted: Jul. 18, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Jianhua Chang (jianhuachang@nuist.edu.cn)

    DOI:10.3788/AOS221323

    Topics