Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1451(2024)

Recent Development on Antiferroelectric Lead Hafnate

LI Dongliang1, TANG Xingui1、*, JIANG Denghui2, JIANG Yanpiang1, and LIU Qiuxiang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(47)

    [1] [1] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.

    [2] [2] PALNEEDI H, PEDDIGARI M, HWANG G T, et al. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook[J]. Adv Funct Mater, 2018, 28(42): 1803665.

    [3] [3] TANAKA M, SAITO R, TSUZUKI K. Electron microscopic studies on domain structure of PbZrO3[J]. Jpn J Appl Phys, 1982, 21(2R): 291.

    [4] [4] SHEN G J, SHEN K. Electron microscope study of domains in PbZrO3[J]. J Mater Sci, 1999, 34(20): 5153-5156.

    [5] [5] WEI X K, JIA C L, DU H C, et al. An unconventional transient phase with cycloidal order of polarization in energy-storage antiferroelectric PbZrO3[J]. Adv Mater, 2020, 32(9): e1907208.

    [6] [6] LIU X H, ZHU J Y, LI Y, et al. High-performance PbZrO3-based antiferroelectric multilayer capacitors based on multiple enhancement strategy[J]. Chem Eng J, 2022, 446: 136729.

    [7] [7] ZHANG T D, SHI Z Z, YIN C, et al. Tunable polarization-drived superior energy storage performance in PbZrO 3 thin films[J]. J Adv Ceram, 2023, 12(5): 930-942.

    [8] [8] FESENKO O E, BALYUNIS L E. The temperature-electric field phase diagram of lead hafnate[J]. Ferroelectrics, 1980, 29(1): 95-98.

    [9] [9] SHIRANE Ge, PEPINSHY R. Phase transitions in antiferroelectric PbHfO3[J]. Phys Rev, 1953, 91(4): 812-815.

    [10] [10] RASHID M, MAHMOOD Q, BABAR F, et al. Study of mechanical, electronic and optical properties of PbZrO3 and PbHfO3; DFT approach[J]. Mater Res Express, 2019, 6(6): 066311.

    [11] [11] SAMARA G A. Pressure and temperature dependence of the dielectric properties and phase transitions of the antiferroelectric perovskites: PbZrO3 and PbHfO3[J]. Phys Rev B, 1970, 1(9): 3777.

    [12] [12] CORKER D L, GLAZER A M, KAMINSKY W, et al. Investigation into the crystal structure of the perovskite lead hafnate, PbHfO3[J]. Acta Crystallogr Sect B, 1998, 54(1): 18-28.

    [13] [13] GE P Z, TANG X G, MENG K, et al. Ultrahigh energy storage density and superior discharge power density in a novel antiferroelectric lead hafnate[J]. Mater Today Phys, 2022, 24: 100681.

    [14] [14] DONG Y Z, ZOU K, LIANG R H, et al. Review of BiScO3-PbTiO3 piezoelectric materials for high temperature applications: Fundamental, progress, and perspective[J]. Prog Mater Sci, 2023, 132: 101026.

    [15] [15] GE P Z, TANG X G, MENG K, et al. Energy storage density and charge-discharge properties of PbHf1?xSnxO3 antiferroelectric ceramics[J]. Chem Eng J, 2022, 429: 132540.

    [16] [16] LI S F, GE P Z, TANG H, et al. Energy storage and dielectric properties of PbHfO3 antiferroelectric ceramics[J]. ACS Appl Energy Mater, 2022, 5(10): 12174-12182.

    [17] [17] QI H, ZUO R Z, XIE A W, et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops[J]. J Eur Ceram Soc, 2019, 39(13): 3703-3709.

    [18] [18] WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions[J]. Adv Funct Mater, 2019, 29(7): 1807321.

    [19] [19] WEI J, YANG T Q, WANG H S. Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics[J]. J Eur Ceram Soc, 2019, 39(2-3): 624-630.

    [20] [20] FAN Z M, MA T, WEI J, et al. TEM investigation of the domain structure in PbHfO3 and PbZrO3 antiferroelectric perovskites[J]. J Mater Sci, 2020, 55(12): 4953-4961.

    [21] [21] CHAUHAN V, WANG B X, YE Z G. Structure, antiferroelectricity and energy-storage performance of lead hafnate in a wide temperature range[J]. Materials, 2023, 16(11): 4144.

    [22] [22] TSAI M F, ZHENG Y Z, LU S C, et al. Antiferroelectric anisotropy of epitaxial PbHfO3 films for flexible energy storage[J]. Adv Funct Mater, 2021, 31(42): 2105060.

    [23] [23] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.

    [24] [24] ACHARYA M, BANYAS E, RAMESH M, et al. Exploring the Pb1-xSrxHfO3 system and potential for high capacitive energy storage density and efficiency[J]. Adv Mater, 2022, 34(1): 2105967.

    [25] [25] XU R, ZHU Q S, XU Z, et al. High energy and power density achieved in Pb0.94La0.04HfO3 antiferroelectric ceramics with multiple phase transition[J]. Appl Phys Lett, 2022, 120(5): 052904.

    [26] [26] HU J, LI W H, TANG X G, et al. Enhancement of energy storage density and efficiency of PbHfO3 doped with La antiferroelectric thin films[J]. ACS Appl Energy Mater, 2023, 6(1): 120-126.

    [27] [27] MA C H, LIAO Y K, ZHENG Y Z, et al. Synthesis of a new ferroelectric relaxor based on a combination of antiferroelectric and paraelectric systems[J]. ACS Appl Mater Interfaces, 2022, 14(19): 22278-22286.

    [28] [28] NADEEM J, KIRAN Z, ZEBA I, et al. A detailed computational study to investigate the influence of metals (Bi, Sn, Ti) substitution on phase transition, electronic band structure and their implications on optical, elastic, anisotropic and mechanical properties of PbHfO3[J]. Opt Quantum Electron, 2022, 55(1): 45.

    [29] [29] JANKOWSKA-SUMARA I, KO J H, MAJCHROWSKI A. The complexity of structural phase transitions in Pb(Hf0.92Sn0.08)O3 single crystals[J]. J Am Ceram Soc, 2021, 104(11): 5990-6001.

    [30] [30] JANKOWSKA-SUMARA I, PA?CIAK M, K?DZIO?KA-GAWE? M, et al. Local properties and phase transitions in Sn doped antiferroelectric PbHfO3 single crystal[J]. J Phys Condens Matter, 2020, 32(43): 435402.

    [31] [31] PIEKARA A, KO J H, LEE J W, et al. Effect of Sn addition on thermodynamic, dielectric, optical, and acoustic properties of lead hafnate[J]. Phys Status Solidi A, 2020, 217(12): 1900958.

    [32] [32] LIU Z G, GE P Z, TANG H, et al. High-temperature dielectric properties and impedance spectroscopy of PbHf1-xSnxO3 ceramics[J]. IET Nanodielectr, 2020, 3(4): 131-137.

    [33] [33] GE P Z, TANG X G, LIU Q X, et al. Superior energy and power density realized in Pb(Hf1-xTix)O3 system at low electric field[J]. Energy Mater Adv, 2023, 4: 0025.

    [34] [34] SONG J D, IWAMOTO Y, IIJIMA T, et al. Electrical properties of antiferroelectric Pb(Zr, Hf)O3 films fabricated by chemical solution deposition[J]. Jpn J Appl Phys, 2022, 61: SN1010.

    [35] [35] CHAO W N, WEI J, YANG T Q, et al. Phase transition behavior of Pb(Hf, Sn, Ti, Nb)O3 ceramics at morphotropic phase boundary[J]. J Am Ceram Soc, 2020, 103(3): 2185-2192.

    [36] [36] XU R, WANG M J, ZHU Q S, et al. Investigation on antiferroelectricity of Pb0.97La0.02(Hf1-xTix)O3 ceramics with low Ti content (0≤x≤0.1)[J]. J Am Ceram Soc, 2022, 105(12): 7438-7445.

    [37] [37] CHAO W N, TIAN L Y, YANG T Q, et al. Excellent energy storage performance achieved in novel PbHfO3-based antiferroelectric ceramics via grain size engineering[J]. Chem Eng J, 2022, 433: 133814.

    [38] [38] GUO J J, YANG T Q. Giant energy storage density in Ba, La Co-doped PbHfO3-based antiferroelectric ceramics by a rolling process[J]. J Alloys Compd, 2021, 888: 161539.

    [39] [39] HANRAHAN B, MILESI-BRAULT C, LEFF A, et al. The other model antiferroelectric: PbHfO3 thin films from ALD precursors[J]. APL Mater, 2021, 9(2): 021108.

    [40] [40] HUANG X X, ZHANG T F, WANG W, et al. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films[J]. Mater Des, 2021, 204: 109666.

    [41] [41] NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature, 2019, 575(7783): 468-472.

    [42] [42] LIU Y, SCOTT J F, DKHIL B. Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives[J]. Appl Phys Rev, 2016, 3(3): 031102.

    [43] [43] ZHANG Y L, LI W L, WANG Z Y, et al. Perovskite Sr1-x(Na0.5Bi0.5)xTi0.99Mn0.01O3 thin films with defect dipoles for high energy-storage and electrocaloric performance[J]. ACS Appl Mater Interfaces, 2019, 11(41): 37947-37954.

    [44] [44] PENG B L, ZHANG Q, GANG B, et al. Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film[J]. Energy Environ Sci, 2019, 12(5): 1708-1717.

    [45] [45] HUANG X X, ZHANG T F, GAO R Z, et al. Large room temperature negative electrocaloric effect in novel antiferroelectric PbHfO3 films[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21331-21337.

    [46] [46] HUANG X X, GE P Z, ZHANG T F, et al. Composition-tailor induced electrocaloric effect near room temperature in (Pb, Ba)HfO3 films[J]. J Materiomics, 2023, 9(3): 502-509.

    [47] [47] TACHIBANA M, MORI T K. High-temperature thermal conductivity of ferroelectric and antiferroelectric perovskites[J]. Appl Phys Express, 2022, 15(12): 121003.

    Tools

    Get Citation

    Copy Citation Text

    LI Dongliang, TANG Xingui, JIANG Denghui, JIANG Yanpiang, LIU Qiuxiang. Recent Development on Antiferroelectric Lead Hafnate[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1451

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 29, 2023

    Accepted: --

    Published Online: Aug. 19, 2024

    The Author Email: TANG Xingui (xgtang@gdut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230834

    Topics