Acta Photonica Sinica, Volume. 52, Issue 4, 0426002(2023)

A Multi-Fano Channel High Sensitivity MIM Waveguide for Sensing

Meina SONG, Yiping HUO*, Yunyan WANG, Pengfei CUI, Tong LIU, Chen ZHAO, and Zuxiong LIAO
Author Affiliations
  • School of Physics and Information Technology, Shaanxi Normal University, Xi′an710062, China
  • show less
    References(40)

    [1] KANO H, MIZUGUCHI S, KAWATA S. Excitation of surface-plasmon polaritons by a focused laser beam[J]. Journal of the Optical Society of America B, 15, 1381-1386(1998).

    [2] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [3] MENG C, LU F, ZHANG W et al. Selective remote-excitation of gap mode in metallic nanowire-nanoparticle system using chiral surface plasmon polaritons[J]. IEEE Journal of Quantum Electronics, 56, 1-6(2020).

    [4] GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [5] ZHAO R, LI J, ZHANG Q et al. Behavior of SPPs in chiral-graphene-chiral structure[J]. Optics Letters, 46, 1975-1978(2021).

    [6] GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [7] LI Z, WEN K, CHEN L et al. Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure[J]. Applied Optics, 58, 4878-4883(2019).

    [8] RAKHSHANI M R, MANSOURI-BIRJANDI M A. Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application[J]. Plasmonics, 12, 999-1006(2017).

    [9] RAKHSHANI M R, MANSOURI-BIRJANDI M A. High-sensitivity plasmonic sensor based on metal-insulator-metal waveguide and hexagonal-ring cavity[J]. IEEE Sensors Journal, 16, 3041-3046(2016).

    [10] TAO J, WANG Q J, HUANG X G. All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material[J]. Plasmonics, 6, 753-759(2011).

    [11] LIN X S, HUANG X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Optics Letters, 33, 2874-2876(2008).

    [12] LIU X, LI J, CHEN J et al. Fano resonance based on D-shaped waveguide structure and its application for human hemoglobin detection[J]. Applied Optics, 59, 6424-6430(2020).

    [13] BASHIRI S, FASIHI K. An all-optical 1×2 demultiplexer using Kerr nonlinear nano-plasmonic switches[J]. Plasmonics, 15, 449-456(2020).

    [14] LAI W, WEN K, LIN J et al. Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator[J]. Applied Optics, 57, 6369-6374(2018).

    [15] FENG C, YING Z, ZHAO Z et al. Wavelength-division-multiplexing (WDM)-based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation[J]. Nanophotonics, 9, 4579-4588(2020).

    [16] LU H, LIU X, MAO D et al. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators[J]. Optics Letters, 37, 3780-3782(2012).

    [17] LIMONOV M F, RYBIN M V, PODDUBNY A N et al. Fano resonances in photonics[J]. Nature Photonics, 11, 543-554(2017).

    [18] FAN S, SUH W, JOANNOPOULOS J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 20, 569-572(2003).

    [19] LIU Z, LI J, LIU Z et al. Fano resonance Rabi splitting of surface plasmons[J]. Scientific Reports, 7, 1-9(2017).

    [20] ZHANG S, BAO K, HALAS N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).

    [21] DENG Y, CAO G, YANG H et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities[J]. Scientific Reports, 7, 1-8(2017).

    [22] ZAFAR R, NAWAZ S, SINGH G et al. Plasmonics-based refractive index sensor for detection of hemoglobin concentration[J]. IEEE Sensors Journal, 18, 4372-4377(2018).

    [23] RAHMATIYAR M, AFSAHI M, DANAIE M. Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects[J]. Plasmonics, 15, 2169-2176(2020).

    [24] ZHU J, LI N. MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity[J]. Optics Express, 28, 19978-19987(2020).

    [25] LI J, CHEN J, LIU X et al. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities[J]. Applied Optics, 60, 5312-5319(2021).

    [26] CHEN Z, SONG X, DUAN G et al. Multiple Fano resonances control in MIM side-coupled cavities systems[J]. IEEE Photonics Journal, 7, 1-10(2015).

    [27] ZHANG T, WANG J, LIU Q et al. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks[J]. Photonics Research, 7, 368-380(2019).

    [28] ZHU J, LI N. MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity[J]. Optics Express, 28, 19978-19987(2020).

    [29] ZHANG S, BAO K, HALAS N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).

    [30] CHEN J, SUN C, GONG Q. Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide[J]. Optics Letters, 39, 52-55(2014).

    [31] LU F, WANG Z, LI K et al. A plasmonic triple-wavelength demultiplexing structure based on a MIM waveguide with side-coupled nanodisk cavities[J]. IEEE Transactions on Nanotechnology, 12, 1185-1190(2013).

    [32] KAZANSKIY N L, BUTT M A, DEGTYAREV S A et al. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index[J]. Computer Optics, 44, 295-318(2020).

    [33] SAGOR R H, HASSAN M, YASEER A A et al. Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance[J]. Applied Nanoscience, 11, 521-534(2021).

    [34] LIU P, YAN S, REN Y et al. A MIM waveguide structure of a high-performance refractive index and temperature sensor based on Fano resonance[J]. Applied Sciences, 11, 10629(2021).

    [35] SHI H, YAN S, YANG X et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator[J]. Micromachines, 12, 495(2021).

    [36] ZHANG X, YAN S, LIU J et al. Refractive index sensor based on a metal-insulator-metal bus waveguide coupled with a U-shaped ring resonator[J]. Micromachines, 13, 750(2022).

    [37] TAVANA S, BAHADORI-HAGHIGHI S. Visible-range double Fano resonance metal–insulator-metal plasmonic waveguide for optical refractive index sensing[J]. Plasmonics, 1-9(2022).

    [38] ZHOU G, YAN S, CHEN L et al. A nano refractive index sensing structure for monitoring hemoglobin concentration in human body[J]. Nanomaterials, 12, 3784(2022).

    [39] LIU F, YAN S, SHEN L et al. A nanoscale sensor based on a toroidal cavity with a built-in elliptical ring structure for temperature sensing application[J]. Nanomaterials, 12, 3396(2022).

    [40] YEH Y L. Real-time measurement of glucose concentration and average refractive index using a laser interferometer[J]. Optics and Lasers in Engineering, 46, 666-670(2008).

    Tools

    Get Citation

    Copy Citation Text

    Meina SONG, Yiping HUO, Yunyan WANG, Pengfei CUI, Tong LIU, Chen ZHAO, Zuxiong LIAO. A Multi-Fano Channel High Sensitivity MIM Waveguide for Sensing[J]. Acta Photonica Sinica, 2023, 52(4): 0426002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 8, 2022

    Accepted: Jan. 30, 2023

    Published Online: Jun. 21, 2023

    The Author Email: Yiping HUO (yphuo@snnu.edu.cn)

    DOI:10.3788/gzxb20235204.0426002

    Topics