Acta Optica Sinica, Volume. 44, Issue 14, 1426002(2024)

Sensing Performance of Two-Dimensional Phoxonic Crystal Heterostructure Cavity

Xu Wang, Miao Tian*, Zhenmeng Ma, and Lei Zhang
Author Affiliations
  • School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • show less
    Figures & Tables(16)
    Model of the sensing structure of phoxonic crystal. (a) Model diagram; (b) schematic of single cells (grey area is air, blue area is silicon matrix); (c) first Brillouin zone (radius of intermediate circular hole is measured in the lattice constant a)
    Dispersion curves of a cell with radius of r=0.45a. (a) Optical TE mode; (b) optical TM mode; (c) acoustic mode
    Supercell model diagrams of 1×11 phoxonic crystal in y direction and phonon and photon surface wave bands and their modal diagrams. (a) Unidirectional supercell model; (b) acoustic mode (solid black line represents the body-wave band); (c) optical TE mode; (d) optical TM mode (light grey shaded areas represent light cones); (e) modal diagram of four surface wave bands of acoustic mode; (f) modal diagram of three surface wave bands of optical TE mode; (g) modal diagram of surface wave energy band of optical TM mode
    Phonon and photon surface wave band curves. (a) Photons (light gray shade represents the light cone); (b) phonons (red dotted line represents the surface wave band of h=0.4a,d=0.275a; blue dotted line represents the surface wave band of h=0.25a,d=0.4a; cyan shade represents the mode gap)
    Transmission spectrum of water and electric field intensity distribution corresponding to the formant peak. (a) Transmission spectrum of water; (b) electric field intensity distribution
    Transmission spectra of three solutions and the relationship between refractive index and resonant wavelength. (a) 1-propanol solution; (b) sodium chloride solution; (c) glucose solution; (d) relationship between refractive index and resonant wavelength
    Diagrams of transmission loss of water and three absorption peaks and their corresponding vibrational modes and acoustic field profiles. (a) Diagram of water transmission loss; (b) vibrational mode diagrams and acoustic field distribution diagrams of three absorption peaks
    Transmission loss plots of mode A and mode B at different mass fractions of three solutions. (a) Mode A of 1-propanol solution; (b) mode A of sodium chloride solution; (c) mode A of glucose solution; (d) mode B of 1-propanol solution; (e) mode B of sodium chloride solution; (f) mode B of glucose solution
    Peak frequency of modes A and B as a function of sound velocity
    • Table 1. Acoustic and optical material parameters for three solutions

      View table

      Table 1. Acoustic and optical material parameters for three solutions

      SolutionSolution mass fraction /%Refractive index nVelocity v /(m·s-1Density ρ/(kg·m-3
      Water01.33331490997.02
      1-propanol6.671545990
      13.671.3451
      27.471531956
      35.761.3609
      38.481472933
      49.891421908
      52.611.3696
      76.951.3792

      Sodium

      chloride

      51.34251548.91040
      101.35151619.31062
      151.36051672.51110
      201.37101746.31159
      Glucose201.363915581084
      401.399916711180
      601.441917811273
    • Table 2. Optical sensing performance parameters of 1-propanol solution

      View table

      Table 2. Optical sensing performance parameters of 1-propanol solution

      Mass fraction of 1-propanol /%0 (water )13.6735.7652.6176.95
      λr /nm1653.171662.881675.881682.941690.81
      dFWHM,r /nm0.470.470.470.460.46
      S /nmRIU-1822.88822.78811.49819.79
      Q3517.383538.043565.703658.573675.67
      ηFOM /RIU-11761.091750.591764.111782.15
    • Table 3. Optical sensing performance parameters of sodium chloride solution

      View table

      Table 3. Optical sensing performance parameters of sodium chloride solution

      Mass fraction of sodium chloride /%0 (water )5101520
      λr /nm1653.171660.761668.151675.511684.16
      dFWHM,r /nm0.470.470.470.460.46
      S /nmRIU-1825.00821.10817.80823.81
      Q3517.383533.533549.263642.413661.22
      ηFOM /RIU-11755.321747.021777.821790.89
    • Table 4. Optical sensing performance parameters of glucose solutions

      View table

      Table 4. Optical sensing performance parameters of glucose solutions

      Mass fraction of glucose /%0 (water )204060
      λr /nm1653.171678.321707.551741.25
      dFWHM,r /nm0.470.430.410.42
      S /nmRIU-1821.89811.94809.52
      Q3517.383903.074164.764145.83
      ηFOM /RIU-11911.371980.341927.43
    • Table 5. Acoustic sensing performance parameters of 1-propanol solution

      View table

      Table 5. Acoustic sensing performance parameters of 1-propanol solution

      Mass fraction of 1-propanol /%0 (water)6.6727.4738.4849.89
      fr,A /GHz4.04614.19514.15163.98813.8464
      fr,B /GHz4.27734.43474.39054.21814.0687
      SA  /MHz /ms-13.2223.1072.5732.778
      SB  /MHz /ms-13.2893.1572.7612.929
    • Table 6. Acoustic sensing performance parameters of sodium chloride solution

      View table

      Table 6. Acoustic sensing performance parameters of sodium chloride solution

      Mass fraction of sodium chloride /%0 (water )5101520
      fr,A /GHz4.04614.21274.40774.56024.7695
      fr,B /GHz4.27734.45224.65724.81545.0346
      SA  /MHz /ms-12.8292.7702.8672.836
      SB  /MHz /ms-12.9692.9122.9742.970
    • Table 7. Acoustic sensing performance parameters of glucose solutions

      View table

      Table 7. Acoustic sensing performance parameters of glucose solutions

      Mass fraction of glucose /%0 (water )204060
      fr,A /GHz4.04614.24384.56704.8825
      fr,B /GHz4.27734.48394.81945.1501
      SA  /MHz /ms-12.9072.8602.868
      SB  /MHz /ms-13.0382.9692.868
    Tools

    Get Citation

    Copy Citation Text

    Xu Wang, Miao Tian, Zhenmeng Ma, Lei Zhang. Sensing Performance of Two-Dimensional Phoxonic Crystal Heterostructure Cavity[J]. Acta Optica Sinica, 2024, 44(14): 1426002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Jan. 16, 2024

    Accepted: Apr. 7, 2024

    Published Online: Jul. 4, 2024

    The Author Email: Miao Tian (tian_miao@163.com)

    DOI:10.3788/AOS240511

    CSTR:32393.14.AOS240511

    Topics