High Power Laser and Particle Beams, Volume. 34, Issue 8, 081002(2022)
Research progress on laser-induced damage mechanism and threshold improvement of pulse compression gratings
[1] Salamin Y I, Hu S X, Hatsagortsyan K Z, et al. Relativistic high-power laser–matter interactions[J]. Physics Reports, 427, 41-155(2006).
[2] Malka V, Fritzler S, Lefebvre E, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 298, 1596-1600(2002).
[3] Bulanov S V, Khoroshkov V S. Feasibility of using laser ion accelerators in proton therapy[J]. Plasma Physics Reports, 28, 453-456(2002).
[4] Liang X, Xie X, Kang J, et al. Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility[J]. High Power Laser Science and Engineering, 6, E58(2018).
[5] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).
[6] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 3, E3(2015).
[7] Wei Zhiyi, Wang Zhaohua, Teng Hao, . Chirped pulse amplification—from ultrafast laser technology to ultraintense physics[J]. Physics, 47, 763-771(2018).
[8] Zhang W, Kong W, Wang G, et al. Review of pulse compression gratings for chirped pulse amplification system[J]. Optical Engineering, 60, 20902(2021).
[9] Zhu Xiaonong, Bao Wenxia. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 46, 1200001(2019).
[10] Bai Q, Liang Y, Cheng K, et al. Design and analysis of a novel large-aperture grating device and its experimental validation[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227, 1349-1359(2013).
[11] [11] Ashe B, Marshall K L, Mastrosimone D, et al. Minimizing contamination to multilayer dielectric diffraction gratings within a large vacuum system[C] International Society f Optics Photonics, 2008: 706902.
[12] Howard H P, Aiello A F, Dressler J G, et al. Improving the performance of high-laser-damage-threshold, multilayer dielectric pulse-compression gratings through low-temperature chemical cleaning[J]. Applied Optics, 52, 1682-1692(2013).
[13] Velpula P K, Kramer D, Rus B. Femtosecond laser-induced damage characterization of multilayer dielectric coatings[J]. Coatings, 10, 603(2020).
[14] Haque S M, De R, Tripathi S, et al. Local structural investigation of refractory oxide thin films near laser damage threshold[J]. Optics & Laser Technology, 112, 245-254(2019).
[15] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 41, 4023-4037(1970).
[16] Danileiko Y K, Manenkov A A, Prokhorov A M, et al. Surface damage of ruby crystals by laser radiation[J]. Soviet Journal of Experimental and Theoretical Physics, 31, 31-36(1970).
[17] Danileiko Y K, Manenkov A A, Nechitailo V S, et al. The role of absorbing inclusions in laser-induced damage of transparent dielectrics[J]. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 63, 1030-1035(1972).
[18] Koldunov M, Manenkov A A. Theory of laser-induced inclusion-initiated damage in optical materials[J]. Optical Engineering, 51, 121811(2012).
[19] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 74, 2248(1995).
[20] Stuart B C, Feit M D, Herman S, et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 13, 459-468(1996).
[21] Manenkov A A. Fundamental mechanisms of laser-induced damage in optical materials: today's state of understanding and problems.[J]. Optical Engineering, 53, 1-7(2014).
[22] Gruzdev V E. Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: ionization dynamics for the Keldysh model[J]. Optical Engineering, 53, 122515(2014).
[23] [23] Stuart B C, Feit M D, Herman S M, et al. Ultrashtpulse optical damage[C]International Society f Optics Photonics. 1996, 2714: 616629.
[24] Bonod N, Néauport J. Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers[J]. Optics Communications, 260, 649-655(2006).
[25] Liu S, Shen Z, Kong W, et al. Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor[J]. Optics Communications, 267, 50-57(2006).
[26] Gamaly E G, Rode A V, Luther-Davies B, et al. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics[J]. Physics of Plasmas, 9, 949-957(2002).
[27] Wellershoff S, Hohlfeld J, Güdde J, et al. The role of electron–phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 69, S99-S107(1999).
[28] Yu J, Xiang X, He S, et al. Laser-induced damage initiation and growth of optical materials[J]. Advances in Condensed Matter Physics, 364627(2014).
[29] [29] Britten J A, Moler W A, Komashko A M, et al. Multilayer dielectric gratings f petawattclass laser systems[C]International Society f Optics Photonics. 2004, 5273: 17.
[30] Neauport J, Lavastre E, Razé G, et al. Effect of electric field on laser induced damage threshold of multilayer dielectric gratings[J]. Optics Express, 15, 12508-12522(2007).
[31] [31] Wood R M. Laserinduced damage of optical materials[M]. CRC Press, 2003.
[32] Guo Y J, Zu X T, Yuan X D, et al. Influence of porosity on laser damage threshold of sol–gel ZrO2 and SiO2 monolayer films[J]. Optik, 123, 479-484(2012).
[33] Bananej A, Hassanpour A, Razzaghi H, et al. The effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single layer films[J]. Optics & Laser Technology, 42, 1187-1192(2010).
[34] Shan Y, He H, Wei C, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 49, 4290-4295(2010).
[35] [35] Staggs M C, Balooch M, Kozlowski M R, et al. Insitu atomicfce microscopy of laserconditioned laserdamaged HfO2SiO2 dielectric mirr coatings[C]Procof SPIE. 1992, 1624: 375385.
[36] Brett M J, Tait R N, Dew S K, et al. Nodular defect growth in thin films[J]. Journal of Materials Science: Materials in Electronics, 3, 64-70(1992).
[37] Cheng X, Zhang J, Ding T, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2, 80(2013).
[38] Cheng X, Tuniyazi A, Wei Z, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 23, 8609-8619(2015).
[39] Wei C, Yi K, Fan Z, et al. Influence of composition and seed dimension on the structure and laser damage of nodular defects in HfO2/SiO2 high reflectors[J]. Applied Optics, 51, 6781-6788(2012).
[40] Velpula P K, Durák M, Kramer D, et al. Evolution of femtosecond laser damage in a hafnia–silica multi-layer dielectric coating[J]. Optics Letters, 44, 5342-5345(2019).
[41] Zou X, Kong F, Jin Y, et al. Influence of nodular defect size on metal dielectric mixed gratings for ultra-short ultra-high intensity laser system[J]. Optical Materials, 91, 177-182(2019).
[42] Poole P, Trendafilov S, Shvets G, et al. Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems[J]. Optics Express, 21, 26341-26351(2013).
[43] Liang F, Vallée R, Gingras D, et al. Role of ablation and incubation processes on surface nanograting formation[J]. Optical Materials Express, 1, 1244-1250(2011).
[44] Vinokurova V D, Gerke R R, Dubrovina T G, et al. Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems[J]. Quantum Electronics, 35, 569(2005).
[45] Jasapara J, Nampoothiri A, Rudolph W, et al. Femtosecond laser pulse induced breakdown in dielectric thin films[J]. Physical Review B, 63, 045117(2001).
[46] Mero M, Liu J, Rudolph W, et al. Scaling laws of femtosecond laser pulse induced breakdown in oxide films[J]. Physical Review B, 71, 115109(2005).
[47] Gallais L, Mangote B, Commandré M, et al. Transient interference implications on the subpicosecond laser damage of multidielectrics[J]. Applied Physics Letters, 97, 051112(2010).
[48] Palmier S, Neauport J, Baclet N, et al. High reflection mirrors for pulse compression gratings[J]. Optics Express, 17, 20430-20439(2009).
[49] Wang L, Kong F, Xia Z, et al. Evaluation of femtosecond laser damage to gold pulse compression gratings fabricated by magnetron sputtering and e-beam evaporation[J]. Applied Optics, 56, 3087-3095(2017).
[50] Mcdonald J P, Mistry V R, Ray K E, et al. Femtosecond-laser-induced delamination and blister formation in thermal oxide films on silicon (100)[J]. Applied Physics Letters, 88, 153121(2006).
[51] Kong F, Huang H, Wang L, et al. Femtosecond laser induced damage of pulse compression gratings[J]. Optics & Laser Technology, 97, 339-345(2017).
[52] Muhutijiang B, Qiu K, Jiang X, et al. Design and fabrication of sine-top broadband gold-coated gratings[J]. Optical Engineering, 54, 105109(2015).
[53] [53] Guéhenneux G, Bouchut P, Veillerot M, et al. Impact of outgassing ganic contamination on laserinduced damage threshold of optics: effect of laser conditioning[C]International Society f Optics Photonics, 2006: 59910F.
[54] [54] Scurlock C T. A phenomenological study of the effect of trace contamination on lifetime reduction laserinduced damage f optics[C]SPIE. 2005, 5647: 8694.
[55] Bai Qingshun, Guo Yongbo, Chen Jiaxuan, . Research and development of ultra-clean manufacturing[J]. Journal of Mechanical Engineering, 52, 145-153(2016).
[56] Dai W, Xiang X, Jiang Y, et al. Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica[J]. Optics and Lasers in Engineering, 49, 273-280(2011).
[57] Sommer S, Stowers I, Van Doren D. Clean construction protocol for the National Ignition Facility beam path and utilities[J]. Journal of the IEST, 46, 85-97(2003).
[58] Pareek R, Kumbhare M N, Mukherjee C, et al. Effect of oil vapor contamination on the performance of porous silica sol-gel antireflection-coated optics in vacuum spatial filters of high-power neodymium glass laser[J]. Optical Engineering, 47, 23801(2008).
[59] [59] Pereira A, Coutard J, Becker S, et al. Impact of ganic contamination on 1064nm laserinduced damage threshold of dielectric mirrs[C]International Society f Optics Photonics, 2007: 64030I.
[60] [60] Nton M A, Stolz C J, Donohue E E, et al. Impact of contaminates on the laser damage threshold of 1ω HR coatings[C]SPIE. 2006, 5991: 241249.
[61] Qiu Zhifang, Wang Minhui, Pu Yunti, . Investigation progress of laser damage properties on multilayer dielectric film pulse compression grating[J]. Journal of Materials Science & Engineering, 35, 329-338(2017).
[62] Sun Shaowei, Qi Naijie, Kong Yan, . Three-dimensional stress fields of laser damaged fused silica[J]. Chinese Journal of Lasers, 48, 0101001(2021).
[63] Yang L, Xiang X, Miao X, et al. Influence of outgassing organic contamination on the transmittance and laser-induced damage of SiO2 sol-gel antireflection film[J]. Optical Engineering, 54, 126101(2015).
[64] [64] Hao Y, Sun M, Shi S, et al. Comparison between intrinsic contaminantinduced damages of multilayer dielectric gratings[C]International Society f Optics Photonics. 2017, 10339: 103390H.
[65] Zhang M, Zhu Y, Li D, et al. An innovative method for preparation of sol–gel HfO2 films with high laser-induced damage threshold after high-temperature annealing[J]. Applied Surface Science, 554, 149615(2021).
[66] Xu C, Xiao Q, Ma J, et al. High temperature annealing effect on structure, optical property and laser-induced damage threshold of Ta2O5 films[J]. Applied Surface Science, 254, 6554-6559(2008).
[67] Ling X, Liu S, Liu X. Enhancement of laser-induced damage threshold of optical coatings by ion-beam etching in vacuum environment[J]. Optik, 200, 163429(2020).
[68] Xu M, Dai Y, Zhou L, et al. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering[J]. Optical Materials, 58, 151-157(2016).
[69] Guo K, Wang Y, Chen R, et al. Effects of ion beam etching of fused silica substrates on the laser-induced damage properties of antireflection coatings at 355 nm[J]. Optical Materials, 90, 172-179(2019).
[70] Shao Y, Ma H, Li C, et al. Influences of nanosecond pulse pre-irradiation on femtosecond laser damage resistance of gold pulse compression grating[J]. Optics Communications, 461, 125258(2020).
[71] Wu Jianbo, Jin Yunxia, Guan Heyuan, . Effect of annealing temperature on metal/dielectric multilayers for fabricating broadband pulse compression gratings[J]. Journal of Inorganic Materials, 29, 1087-1092(2014).
[72] [72] Ashe B, Marshall K L, Giacofei C, et al. Evaluation of cleaning methods f multilayer diffraction gratings[C]International Society f Optics Photonics. 2007, 6403: 64030O.
[73] Chen S, Sheng B, Qiu K, et al. Cleaning method for improving laser induced damage threshold of multilayer dielectric pulse compressor gratings[J]. High Power Laser and Particle Beams, 24, 2631-2636(2012).
[74] Li Yuhai, Bai Qingshun, Yang Delun, . Mechanism and verification of plasma cleaning of organic contaminant on aluminum alloy surface[J]. China Surface Engineering, 33, 58-67(2020).
[75] Li Yangshuai, Zhu Jianqiang, Pang Xiangyang, . Numerical simulation of debris removal trajectories on transport mirrors in high power laser system[J]. Chinese Journal of Lasers, 42, 0102010(2015).
[76] Chen Shangbi, Sheng Bin, Qiu Keqiang, . Cleaning multilayer dielectric pulse compressor gratings with top layer of HfO2 by Piranha solution[J]. High Power Laser and Particle Beams, 23, 2106-2110(2011).
[77] Wu L, Chen K, Cheng S, et al. Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid[J]. Journal of Thermal Analysis and Calorimetry, 93, 115-120(2008).
[78] Moser L, Marot L, Steiner R, et al. Plasma cleaning of ITER first mirrors[J]. Physica Scripta, 14047(2017).
[79] Ge Xulei, Teng Hao, Zheng Yi, . Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier[J]. Chinese Journal of Lasers, 39, 0402006(2012).
[80] Li Y, Ling X, Zhao Y, et al. Improvement of the laser-induced damage resistance of optical coatings in vacuum environments[J]. Optik, 124, 5154-5157(2013).
[81] Ling X, Zhao Y, Liu X, et al. Comparative study of laser-induced damage of two reflective coatings in vacuum due to organic contamination[J]. Optik, 123, 1453-1456(2012).
[82] [82] Jitsuno T, Murakami H, Motokoshi S, et al. Source of contamination in damagetest sample vacuum[C]International Society f Optics Photonics. 2016, 9983: 998316.
Get Citation
Copy Citation Text
Qingshun Bai, Hao Sun, Yuhai Li, Peng Zhang, Yunlong Du. Research progress on laser-induced damage mechanism and threshold improvement of pulse compression gratings[J]. High Power Laser and Particle Beams, 2022, 34(8): 081002
Category: High Power Laser Physics and Technology?Overview
Received: Jul. 6, 2021
Accepted: May. 24, 2022
Published Online: Aug. 8, 2022
The Author Email: Qingshun Bai (Qshbai@hit.edu.cn)