Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 5, 468(2025)

Research on computation off loading strategy in MEC-coordinated power sensor networks

BAO Yuben and WU Zanhong
Author Affiliations
  • Guangdong Power Dispatch and Control Center, Guangzhou Guangdong 510000, China
  • show less
    References(28)

    [1] [1] CAO Zijian, LIN Jin, WAN Can, et al. Optimal cloud computing resource allocation for demand side management in smart grid[J]. IEEE Transactions on Smart Grid, 2016, 8(4): 1943-1955. DOI: 10.1109/TSG.2015.2512712.

    [2] [2] ELHABYAN R, SHI W, ST-HILAIRE M. Coverage protocols for wireless sensor networks: review and future directions[J]. Journal of Communications and Networks, 2019, 21(1): 45-60. DOI: 10.1109/JCN.2019.000005.

    [3] [3] SRIVASTAVA A, MISHRA P K. A survey on WSN issues with its heuristics and meta-heuristics solutions[J]. Wireless Personal Communications, 2021, 121(1): 745-814. DOI: 10.1007/s11277-021-08659-x.

    [4] [4] TRIPATHI A, GUPTA H P, DUTTA T, et al. Coverage and connectivity in WSNs: a survey, research issues and challenges[J]. IEEE Access, 2018(6): 26971-26992. DOI: 10.1109/ACCESS.2018.2833632.

    [5] [5] FEI Zesong, LI Bin, YANG Shaoshi, et al. A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms, and open problems[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 550-586. DOI: 10.1109/COMST.2016.2610578.

    [6] [6] GUO Songtao, LIU Jiadi, YANG Yuanyuan, et al. Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing[J]. IEEE Transactions on Mobile Computing, 2019, 18(2): 319-333. DOI: 10.1109/TMC.2018.2831230.

    [7] [7] LI Y Z, YU C F, SHAHIDEHPOUR M, et al. Deep reinforcement learning for smart grid operations: algorithms, applications, and prospects[J]. Proceedings of the IEEE, 2023, 111(9): 1055-1096. DOI: 10.1109/JPROC.2023.3303358.

    [8] [8] GAO Mingjin, LI Jun, JAYAKODY D N K, et al. A super base station architecture for future ultra-dense cellular networks: toward low latency and high energy efficiency[J]. IEEE Communications Magazine, 2018, 56(6): 35-41. DOI: 10.1109/MCOM.2018.1700414.

    [9] [9] SPINELLI F, MANCUSO V. Toward enabled industrial verticals in 5G: a survey on MEC-based approaches to provisioning and flexibility[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 596-630. DOI: 10.1109/COMST.2020.3037674.

    [10] [10] MEHRABI M, YOU D, LATZKO V, et al. Device-enhanced MEC: Multi-access Edge Computing(MEC) aided by end device computation and caching: a survey[J]. IEEE Access, 2019(7): 166079-166108. DOI: 10.1109/ACCESS.2019.2953172.

    [11] [11] SANTOS , BERNARDINO J, CORREIA N. Automated application deployment on multi-access edge computing: a survey[J]. IEEE Access, 2023(11): 89393-89408. DOI: 10.1109/ACCESS.2023.3307023.

    [12] [12] NENCIONI G, GARROPPO R G, OLIMID R F. 5G Multi-access Edge Computing: a survey on security, dependability, and performance[J]. IEEE Access, 2023(11): 63496-63533. DOI: 10.1109/ACCESS.2023.3288334.

    [13] [13] LI Qian, SHI Liqin, ZHANG Zhongjun, et al. Resource allocation in UAV-enabled wireless-powered MEC networks with hybrid passive and active communications[J]. IEEE Internet of Things Journal, 2023, 10(3): 2574-2588. DOI: 10.1109/JIOT.2022.3214539.

    [14] [14] DONG S, XIA Y J, KAMRUZZAMAN J. Quantum particle swarm optimization for task offloading in mobile edge computing[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 9113-9122. DOI: 10.1109/TII.2022.3225313.

    [15] [15] YUAN Xiaoming, TIAN Hansen, ZHANG Wenshuo, et al. CA-PSO: a combinatorial auction and improved particle swarm optimization based computation offloading approach for E-healthcare[C]//ICC 2022-IEEE International Conference on Communications. Seoul, Korea: IEEE, 2022: 3850-3855. DOI: 10.1109/ICC45855.2022.9838733.

    [16] [16] BI Jing, YUAN Haitao, DUANMU Shuaifei, et al. Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization[J]. IEEE Internet of Things Journal, 2021, 8(5): 3774-3785. DOI: 10.1109/JIOT.2020.3024223.

    [17] [17] LEI Lei, XU Huijuan, XIONG Xiong, et al. Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge computing system[J]. IEEE Internet of Things Journal, 2019, 6(3): 5345-5362. DOI: 10.1109/JIOT.2019.2900550.

    [18] [18] ZHANG Xiayan, WANG Junxuan, WANG Bing, et al. Off loading strategy for UAV-assisted mobile edge computing based on reinforcement learning[C]//2022 IEEE International Conference on Communications in China(ICCC). Sanshui, Foshan, China: IEEE, 2022: 702-707. DOI: 10.1109/ICCC55456.2022.9880697.

    [20] [20] ZAIMEN K, BRAHMIA M E A, MOALIC L, et al. A survey of artificial intelligence based WSNs deployment techniques and related objectives modeling[J]. IEEE Access, 2022(10): 113294-113329. DOI: 10.1109/ACCESS.2022.3217200.

    [21] [21] OSAMY W, KHEDR A M, SALIM A, et al. Coverage, deployment and localization challenges in wireless sensor networks based on artificial intelligence techniques: a review[J]. IEEE Access, 2022(10): 30232-30257. DOI: 10.1109/ACCESS.2022.3156729.

    [22] [22] ZHU Nengyu, XU Xiaodong, HAN Shujun, et al. Sleep-scheduling and joint computation-communication resource allocation in MEC networks for 5G IoT[C]//2021 IEEE Wireless Communications and Networking Conference(WCNC). Nanjing, China: IEEE, 2021: 1-7. DOI: 10.1109/WCNC49053.2021.9417322.

    [23] [23] GUO Songtao, LIU Jiadi, YANG Yuanyuan, et al. Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing[J]. IEEE Transactions on Mobile Computing, 2019, 18(2): 319-333. DOI: 10.1109/TMC.2018.2831230.

    [24] [24] GARAALI R, CHAIEB C, AJIB W, et al. Learning-based task offloading for mobile edge computing[C]//2022 IEEE International Conference on Communications. Seoul, Korea: IEEE, 2022: 1659-1664. DOI: 10.1109/ICC45855.2022.9838831.

    [25] [25] SHANG Ce, SUN Yan, LUO Hong, et al. Computation offloading and resource allocation in NOMA-MEC: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2023, 10(17): 15464-15476. DOI: 10.1109/JIOT.2023.3264206.

    [26] [26] DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294-2323. DOI: 10.1109/COMST.2018.2835558.

    [27] [27] VAEZI M, SCHOBER R, DING Zhiguo, et al. Non-orthogonal multiple access: common myths and critical questions[J]. IEEE Wireless Communications, 2019, 26(5): 174-180. DOI: 10.1109/MWC.2019.1800598.

    [28] [28] ZHAO Junhui, LI Qiuping, GONG Yi, et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7944-7956. DOI: 10.1109/TVT.2019.2917890.

    [29] [29] HASSELT H V, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, Arizona: AAAI Press, 2016: 2094-2100. DOI: 10.5555/3016100.3016191.

    Tools

    Get Citation

    Copy Citation Text

    BAO Yuben, WU Zanhong. Research on computation off loading strategy in MEC-coordinated power sensor networks[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(5): 468

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 25, 2024

    Accepted: Jun. 5, 2025

    Published Online: Jun. 5, 2025

    The Author Email:

    DOI:10.11805/tkyda2024063

    Topics