Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1037007(2025)

Lightweight Dental Image Segmentation with Quadrant Oblique Displacement

Ziyuan Yin1,2 and Yun Wu1,2、*
Author Affiliations
  • 1State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou , China
  • 2College of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou , China
  • show less
    Figures & Tables(11)
    QOD-UNeXt model structure
    QOD block structure
    Illustration of QOD operation
    Structure of ECA module
    Comparisons of dental segmentation results of different models on STS MICCAI 2023 dataset. (a) Input images; (b) ground truth; (c) UNet; (d) UNet++; (e) ResU-Net; (f) CaraNet; (g) TransUNet; (h) MedT; (i) UNeXt; (j) QOD-UNeXt
    Comparisons of dental segmentation results of different models on Tufts dataset. (a) Input images; (b) ground truth; (c) UNet; (d) UNet++; (e) ResU-Net; (f) CaraNet; (g) TransUNet; (h) MedT; (i) UNeXt; (j) QOD-UNeXt
    • Table 1. Overview of datasets used for dental image segmentation

      View table

      Table 1. Overview of datasets used for dental image segmentation

      Dataset nameNumber of imagesOriginal resolutionProcessed resolution
      STS-MICCAI 20232900640×320256×256
      Tufts10001615×840256×256
    • Table 2. Comparison of parameters, GFLOPs, and inference time among different models

      View table

      Table 2. Comparison of parameters, GFLOPs, and inference time among different models

      TypeModelParameters /MGFLOPs /GInference time /ms
      CNN

      UNet4

      UNet++7

      ResU-Net5

      CaraNet8

      32.52

      48.99

      13.04

      24.92

      107.07

      575.61

      809.84

      59.52

      18

      53

      70

      20

      Transformer

      TransUNet14

      MedT16

      58.68

      1.37

      305.44

      24.06

      38

      292

      LightweightUNeXt281.475.736
      LightM-UNet272.96238.5369
      MambaU-Mamba19175.871803.00171
      KANsU-KAN189.3827.5556
      OursQOD-UNeXt1.357.6811
    • Table 3. Comparisons of results among different models on STS-MICCAI 2023 dataset

      View table

      Table 3. Comparisons of results among different models on STS-MICCAI 2023 dataset

      TypeModelSTS-MICCAI 2023 dataset
      Dice /%IoU /%SEN /%SPE /%
      CNN

      UNet4

      UNet++7

      ResU-Net5

      CaraNet8

      79.40 ± 0.44

      86.31 ± 0.49

      86.27 ± 0.59

      87.60 ± 0.55

      71.61 ± 0.48

      76.82 ± 0.69

      76.59 ± 0.75

      78.79 ± 0.69

      76.71 ± 0.55

      86.70 ± 0.41

      85.97 ± 0.83

      88.11 ± 0.75

      91.56 ± 0.73

      95.80 ± 0.80

      94.10 ± 0.52

      93.42 ± 0.20

      Transformer

      TransUNet14

      MedT16

      89.82 ± 0.47

      87.80 ± 0.28

      81.79 ± 0.26

      78.86 ± 0.37

      87.81 ± 0.53

      89.13 ± 0.12

      96.81 ± 0.70

      92.73 ± 0.94

      Lightweight

      UNeXt28

      LightM-UNet27

      88.84 ± 0.68

      87.15 ± 0.52

      80.98 ± 0.39

      79.94 ± 0.43

      88.40 ± 0.86

      87.05 ± 0.62

      95.34 ± 0.03

      94.62 ± 0.58

      MambaU-Mamba1990.47 ± 0.4583.49 ± 0.5489.32 ± 0.7197.89 ± 0.67
      KANsU-KAN1889.68 ± 0.3981.73 ± 0.4989.47 ± 0.6596.12 ± 0.72
      OursQOD-UNeXt92.35 ± 0.4086.00 ± 0.7091.80 ± 0.1198.57 ± 0.35
    • Table 4. Comparisons of results among different models on Tufts dataset

      View table

      Table 4. Comparisons of results among different models on Tufts dataset

      TypeModelTufts dataset
      Dice /%IoU /%SEN /%SPE /%
      CNN

      UNet4

      UNet++7

      ResU-Net5

      CaraNet8

      78.39 ± 0.60

      81.11 ± 0.52

      80.23 ± 0.02

      82.33 ± 0.27

      71.20 ± 0.66

      73.09 ± 0.58

      69.52 ± 0.84

      70.95 ± 0.20

      87.85 ± 0.10

      90.98 ± 0.65

      81.73 ± 0.99

      90.22 ± 0.54

      89.49 ± 0.08

      88.99 ± 0.35

      90.94 ± 0.56

      87.59 ± 0.26

      Transformer

      TransUNet14

      MedT16

      83.71 ± 0.11

      82.23 ± 0.95

      72.97 ± 0.80

      71.87 ± 0.02

      89.19 ± 0.02

      91.74 ± 0.40

      91.81 ± 0.50

      92.63 ± 0.82

      Lightweight

      UNeXt28

      LightM-UNet27

      82.69 ± 0.65

      82.15 ± 0.58

      72.72 ± 0.84

      74.20 ± 0.76

      88.08 ± 0.46

      89.65 ± 0.55

      95.07 ± 0.23

      93.80 ± 0.34

      MambaU-Mamba1987.12 ± 0.4878.20 ± 0.7192.35 ± 0.6295.50 ± 0.28
      KANsU-KAN1886.43 ± 0.4277.65 ± 0.6991.60 ± 0.5394.70 ± 0.32
      OursQOD-UNeXt90.32 ± 0.3082.86 ± 0.4093.43 ± 0.8197.24 ± 0.06
    • Table 5. Results of ablation study on STS-MICCAI 2023 and Tufts dataset

      View table

      Table 5. Results of ablation study on STS-MICCAI 2023 and Tufts dataset

      MethodSTS-MICCAI 2023 datasetTufts dataset
      Dice /%IoU /%SEN /%SPE /%Dice /%IoU /%SEN /%SPE /%
      Experiment A84.2177.9480.0487.6682.0674.4084.1487.97
      Experiment B88.5882.2787.2393.9587.1378.9189.1692.59
      Experiment C90.0583.4589.7295.7488.2180.3790.5694.38
      Experiment D87.2880.7286.1592.1286.0277.4287.2990.73
      Experiment E83.9177.3979.9686.8381.9573.9183.2787.11
      Experiment F82.4476.2177.4785.0480.8772.4581.8785.32
      QOD-UNeXt92.3586.0091.8098.5790.3282.8693.4397.24
    Tools

    Get Citation

    Copy Citation Text

    Ziyuan Yin, Yun Wu. Lightweight Dental Image Segmentation with Quadrant Oblique Displacement[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1037007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Oct. 15, 2024

    Accepted: Nov. 26, 2024

    Published Online: Apr. 25, 2025

    The Author Email: Yun Wu (wuyun_v@126.com)

    DOI:10.3788/LOP242111

    CSTR:32186.14.LOP242111

    Topics