Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 1, 86(2022)
Video inpainting based on residual convolution attention network
[1] [1] BERTALMIO M, BERTOZZI A L, SAPIRO G. Navier-stokes, fluid dynamics, and image and video inpainting [C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai: IEEE, 2001: 355-362.
[2] [2] GRANADOS M, TOMPKIN J, KIM K, et al. How not to be seen-object removal from videos of crowded scenes [J]. Computer Graphics Forum, 2012, 31(2pt1): 219-228.
[4] [4] MATSUSHITA Y, OFEK E, GE W N, et al. Full-frame video stabilization with motion inpainting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1150-1163.
[5] [5] PATWARDHAN K A, SAPIRO G, BERTALMIO M. Video inpainting of occluding and occluded objects [C]//Proceedings of the IEEE International Conference on Image Processing 2005. Genova: IEEE, 2005: II-69.
[6] [6] KIM D, WOO S, LEE J Y, et al. Deep video inpainting [C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 5785-5794.
[7] [7] TANG N C, HSU C T, SU C W, et al. Video inpainting on digitized vintage films via maintaining spatiotemporal continuity [J]. IEEE Transactions on Multimedia, 2011, 13(4): 602-614.
[8] [8] KIM D, WOO S, LEE J Y, et al. Deep blind video decaptioning by temporal aggregation and recurrence [C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 4258-4267.
[9] [9] HUANG J B, KANG S B, AHUJA N, et al. Temporally coherent completion of dynamic video [J]. ACM Transactions on Graphics, 2016, 35(6): 196.
[12] [12] SHIH T K, TANG N C, HWANG J N. Exemplar-based video inpainting without ghost shadow artifacts by maintaining temporal continuity [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(3): 347-360.
[16] [16] WANG C, HUANG H B, HAN X G, et al. Video inpainting by jointly learning temporal structure and spatial details [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5232-5239.
[17] [17] XU R, LI X X, ZHOU B L, et al. Deep flow-guided video inpainting [C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 3718-3727.
[18] [18] ZHANG H T, MAI L, JIN H L, et al. An internal learning approach to video inpainting [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 2720-2729.
[19] [19] YU J H, LIN Z, YANG J M, et al. Free-form image inpainting with gated convolution [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 4470-4479.
[20] [20] LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding [C]//Proceedingsof the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 7082-7092.
[22] [22] LEE S, OH S W, WON D, et al. Copy-and-paste networks for deep video inpainting [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 4412-4420.
[23] [23] OH S W, LEE S, LEE J Y, et al. Onion-peel networks for deep video completion [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 4402-4411.
[24] [24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[25] [25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 6000-6010.
[26] [26] HAUSMAN D M, WOODWARD J. Independence, invariance and the causal markov condition [J]. The British Journal for the Philosophy of Science, 1999, 50(4): 521-583.
[27] [27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale [J]. arXiv preprint arXiv:2010.11929, 2020.
[28] [28] YANG F Z, YANG H, FU J L, et al. Learning texture transformer network for image super-resolution [C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 5790-5799.
[29] [29] CAELLES S, MONTES A, MANINIS K K, et al. The 2018 DAVIS challenge on video object segmentation [J]. arXiv preprint arXiv:1803.00557, 2018.
[30] [30] XU N, YANG L J, FAN Y C, et al. YouTube-VOS: a large-scale video object segmentation benchmark [J]. arXiv preprint arXiv:1809.03327, 2018.
[31] [31] CHANG Y L, LIU Z Y, LEE K Y, et al. Learnable gated temporal shift module for free-form video inpainting [C]//Proceedings of the 30th British Machine Vision Conference. Cardiff, UK: BMVA Press, 2019: 149.
Get Citation
Copy Citation Text
LI De-cai, YAN Qun, YAO Jian-min, LIN Zhi-xian, DONG Ze-yu. Video inpainting based on residual convolution attention network[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 86
Category:
Received: Jul. 24, 2021
Accepted: --
Published Online: Mar. 1, 2022
The Author Email: LI De-cai (n191127093@fzu.edu.cn)