Acta Photonica Sinica, Volume. 53, Issue 8, 0801002(2024)

Bathymetric Inversion Method for Active-passive Remote Sensing Fused Radiative Transfer Information Convolutional Neural Networks

Congshuang XIE, Peng CHEN*, and Delu PAN
Author Affiliations
  • State Key Laboratory of Satellite Marine Environmental Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
  • show less
    References(49)

    [1] BENVENISTE J, CAZENAVE A, VIGNUDELLI S et al. Requirements for a coastal hazards observing system[J]. Frontiers in Marine Science, 6, 348(2019).

    [2] PACHECO A, HORTA J, LOUREIRO C et al. Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters[J]. Remote Sensing of Environment, 159, 102-116(2015).

    [3] MAYER L, JAKOBSSON M, ALLEN G et al. The Nippon foundation-GEBCO seabed 2030 project: the quest to see the world's oceans completely mapped by 2030[J]. Geosciences, 8, 63(2018).

    [4] JAWAK S D, VADLAMANI S S, LUIS A J. A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons[J]. Advances in Remote Sensing, 4, 16(2015).

    [5] DIESING M, COGGAN R, VANSTAEN K. Widespread rocky reef occurrence in the central English Channel and the implications for predictive habitat mapping[J]. Estuarine, Coastal and Shelf Science, 83, 647-658(2009).

    [6] PORSKAMP P, RATTRAY A, YOUNG M et al. Multiscale and hierarchical classification for benthic habitat mapping[J]. Geosciences, 8, 119(2018).

    [7] CHOI C, KIM D J. Optimum baseline of a single-pass In-SAR system to generate the best DEM in tidal flats[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 919-929(2018).

    [8] HAN W, ZHANG X, WANG Y et al. A survey of machine learning and deep learning in remote sensing of geological environment: challenges, advances, and opportunities[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 202, 87-113(2023).

    [9] CABALLERO I, STUMPF R P. Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: from a single image to multi-temporal approaches using Sentinel-2A/B[J]. Optics Express, 28, 11742-11766(2020).

    [10] SIMPSON C E, ARP C D, SHENG Y et al. Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska[J]. Earth System Science Data, 13, 1135-1150(2021).

    [11] DEKKER A G, PHINN S R, ANSTEE J et al. Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments[J]. Limnology and Oceanography: Methods, 9, 396-425(2011).

    [12] HAMYLTON S M, HEDLEY J D, BEAMAN R J. Derivation of high-resolution bathymetry from multispectral satellite imagery: a comparison of empirical and optimisation methods through geographical error analysis[J]. Remote Sensing, 7, 16257-16273(2015).

    [13] GAO J. Bathymetric mapping by means of remote sensing: methods, accuracy and limitations[J]. Progress in Physical Geography, 33, 103-116(2009).

    [14] BRANDO V E, ANSTEE J M, WETTLE M et al. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data[J]. Remote sensing of Environment, 113, 755-770(2009).

    [15] CASAL G, MONTEYS X, HEDLEY J et al. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data[J]. International Journal of Remote Sensing, 40, 2855-2879(2018).

    [16] LYZENGA D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 17, 379-383(1978).

    [17] STUMPF R P, HOLDERIED K, SINCLAIR M. Determination of water depth with high-resolution satellite imagery over variable bottom types[J]. Limnology and Oceanography, 48, 547-556(2003).

    [18] NIROUMAND-JADIDI M, BOVOLO F, BRUZZONE L et al. Physics-based bathymetry and water quality retrieval using planetscope imagery: Impacts of 2020 COVID-19 lockdown and 2019 extreme flood in the Venice Lagoon[J]. Remote Sensing, 12, 2381(2020).

    [19] TRAGANOS D, POURSANIDIS D, AGGARWAL B et al. Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2[J]. Remote Sensing, 10, 859(2018).

    [20] CABALLERO I, STUMPF R. Towards routine mapping of shallow bathymetry in environments with variable turbidity: contribution of Sentinel-2A/B satellites mission[J]. Remote Sensing, 12, 451(2020).

    [21] FORFINSKI-SARKOZI N A, PARRISH C E. Active-passive spaceborne data fusion for mapping nearshore bathymetry[J]. Photogrammetric Engineering & Remote Sensing, 85, 281-295(2019).

    [22] NEUMANN T, SCOTT V S, MARKUS T et al. The Multiple Altimeter Beam Experimental Lidar (MABEL): an airborne simulator for the ICESat-2 mission[J]. Journal of Atmospheric and Oceanic Technology, 30, 345-352(2013).

    [23] ZHANG W, XU N, MA Y et al. A maximum bathymetric depth model to simulate satellite photon-counting lidar performance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 182-197(2021).

    [24] MA Y, LIU R, LI S et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar[J]. Optics Express, 26, 24752-24762(2018).

    [25] CHEN Y, LE Y, ZHANG D et al. A photon-counting LiDAR bathymetric method based on adaptive variable ellipse filtering[J]. Remote Sensing of Environment, 256, 112326(2021).

    [26] XU N, MA Y, YANG J et al. Deriving tidal flat topography using ICESat-2 laser altimetry and Sentinel-2 imagery[J]. Geophysical Research Letters, 49, e2021GL096813(2022).

    [27] XIE C, CHEN P, PAN D et al. Improved filtering of ICESat-2 lidar data for nearshore bathymetry estimation using Sentinel-2 imagery[J]. Remote Sensing, 13, 4303(2021).

    [28] AURET L, ALDRICH C. Interpretation of nonlinear relationships between process variables by use of random forests[J]. Minerals Engineering, 35, 27-42(2012).

    [29] KALOOP M R, EL-DIASTY M, HU J W et al. Hybrid artificial neural networks for modeling shallow-water bathymetry via satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11(2022).

    [30] LIU S, WANG L, LIU H et al. Deriving bathymetry from optical images with a localized neural network algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 5334-5342(2018).

    [31] MISRA A, VOJINOVIC Z, RAMAKRISHNAN B et al. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery[J]. International Journal of Remote Sensing, 39, 4431-4450(2018).

    [32] WANG Y, ZHOU X, LI C et al. Bathymetry model based on spectral and spatial multifeatures of remote sensing image[J]. IEEE Geoscience and Remote Sensing Letters, 17, 37-41(2020).

    [33] PENG K, XIE H, XU Q et al. A physics-assisted convolutional neural network for bathymetric mapping using ICESat-2 and Sentinel-2 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).

    [34] AI B, WEN Z, WANG Z et al. Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2888-2898(2020).

    [35] CHEN H, YIN D, CHEN J et al. Stacked spectral feature space patch: an advanced spectral representation for precise crop classification based on convolutional neural network[J]. The Crop Journal, 10, 1460-1469(2022).

    [36] LEGLEITER C J, ROBERTS D A, LAWRENCE R L. Spectrally based remote sensing of river bathymetry[J]. Earth Surface Processes and Landforms, 34, 1039-1059(2009).

    [37] ALTAMIMI Z, REBISCHUNG P, MÉTIVIER L et al. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research: Solid Earth, 121, 6109-6131(2016).

    [38] MARKUS T, NEUMANN T, MARTINO A et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).

    [39] DRUSCH M, DEL BELLO U, CARLIER S et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 120, 25-36(2012).

    [40] RICHTER R, WANG X, BACHMANN M et al. Correction of cirrus effects in Sentinel-2 type of imagery[J]. International Journal of Remote Sensing, 32, 2931-2941(2011).

    [41] PARRISH C E, MAGRUDER L A, NEUENSCHWANDER A L et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS's bathymetric mapping performance[J]. Remote Sensing, 11, 1634(2019).

    [42] NEUMANN T A, MARTINO A J, MARKUS T et al. The ice, cloud, and land elevation satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 233, 111325(2019).

    [43] KIRK J T[M]. Light and photosynthesis in aquatic ecosystems(1994).

    [44] LEE Z P, DARECKI M, CARDER K L et al. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods[J]. Journal of Geophysical Research: Oceans, 110, 1-9(2005).

    [45] CHEADLE C, VAWTER M P, FREED W J et al. Analysis of microarray data using Z score transformation[J]. The Journal of Molecular Diagnostics, 5, 73-81(2003).

    [46] ROBINSON I S[M]. Discovering the ocean from space: the unique applications of satellite oceanography(2010).

    [47] TOMING K, KUTSER T, LAAS A et al. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery[J]. Remote Sensing, 8, 640(2016).

    [48] CHAMI M, LAFRANCE B, FOUGNIE B et al. OSOAA: a vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean[J]. Optics Express, 23, 27829-27852(2015).

    [49] ZHANG Z, CHEN P, MAO Z. SOLS: an open-source spaceborne oceanic lidar simulator[J]. Remote Sensing, 14, 1849(2022).

    Tools

    Get Citation

    Copy Citation Text

    Congshuang XIE, Peng CHEN, Delu PAN. Bathymetric Inversion Method for Active-passive Remote Sensing Fused Radiative Transfer Information Convolutional Neural Networks[J]. Acta Photonica Sinica, 2024, 53(8): 0801002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 4, 2024

    Accepted: Feb. 29, 2024

    Published Online: Oct. 15, 2024

    The Author Email: Peng CHEN (chenp@sio.org.cn)

    DOI:10.3788/gzxb20245308.0801002

    Topics