Chinese Journal of Lasers, Volume. 48, Issue 5, 0501005(2021)
Progress on Yb-Doped All-Solid-State Femtosecond Laser Amplifier with High Repetition Rate
[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[2] Goulielmakis E, Schultze M, Hofstetter M et al. Single-cycle nonlinear optics[J]. Science, 320, 1614-1617(2008).
[4] Zhou S Y, Bai Y F, Tian Y et al. Self-organized kilotesla magnetic-tube array in an expanding spherical plasma irradiated by kHz femtosecond laser pulses[J]. Physical Review Letters, 121, 255002(2018).
[6] Koralek J D, Douglas J F, Plumb N C et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ[J]. Physical Review Letters, 96, 017005(2006).
[7] Stockman M I, Kling M F, Kleineberg U et al. Attosecond nanoplasmonic-field microscope[J]. Nature Photonics, 1, 539-544(2007).
[9] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG Innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).
[11] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).
[15] Dörring J, Killi A, Morgner U et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. Optics Express, 12, 1759-1768(2004).
[16] Salin F, Blanc C, Squier J et al. Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses[J]. Optics Letters, 23, 718-720(1998).
[17] Frede M, Wilheim R, Brendel M et al. High power fundamental mode Nd∶YAG laser with efficient birefringence compensation[J]. Optics Express, 12, 3581-3589(2004).
[18] Matsubara S, Tanaka M, Takama M et al. A picosecond thin-rod Yb∶YAG regenerative laser amplifier with the high average power of 20 W[J]. Laser Physics Letters, 10, 055810(2013).
[22] Rouyer C, Mazataud É, Allais I et al. Generation of 50-TW femtosecond pulses in a Ti: sapphire/Nd chain[J]. Optics Letters, 18, 214-216(1993).
[23] Fan T Y, Ripin D J, Aggarwal R L et al. Cryogenic Yb 3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 448-459(2007).
[29] Havrilla D, Ryba T, Holzer M. High-power disk lasers: advances and applications[J]. Proceedings of SPIE, 8235, 82350W(2012).
[30] Metzger T, Schwarz A, Teisset C Y et al. High-repetition-rate picosecond pump laser based on a Yb∶YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 34, 2123-2125(2009).
[31] Grishin M, Gulbinas V, Michailovas A. Dynamics of high repetition rate regenerative amplifiers[J]. Optics Express, 15, 9434-9443(2007).
[33] Krötz P, Wandt C, Grebing C et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria., ATh1A, 8(2019).
[42] Stučinskas D, Antipenkov R, Varanavičius A. 30 W dual active element Yb∶KGW regenerative amplifier for amplification of sub-500 fs pulses[J]. Proceedings of SPIE, 6731, 67312Y(2007).
[48] Pugžlys A, Sidorov D, Ali T et al. Spectroscopic and lasing properties of cryogenically cooled Yb, Na∶CaF2[C]. //Advanced Solid-State Photonics, January 27-30, 2008, Nara, Japan., MF4(2008).
[49] Pugžlys A, Andriukaitis G, Baltuška A et al. Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb, Na∶CaF2 amplifier[J]. Optics Letters, 34, 2075-2077(2009).
[51] Caracciolo E, Kemnitzer M, Guandalini A et al. Multi-kHz, high energy, femtosecond diode-pumped Yb∶CaF2 regenerative amplifier[C]. //CLEO: Science and Innovations 2014, June 8-13, 2014, San Jose, California., STh4E, 2(2014).
[52] Sevillano P, Camy P, Doualan J L et al. Fiber laser pumped Yb∶CaF2 regenerative amplifier delivering 130 fs pulses with 4.3 W output power[C]. //2017 Conference on Lasers and Electro--Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany.(2017).
[54] Caracciolo E, Guandalini A, Pirzio F et al. High power Yb∶CALGO ultrafast regenerative amplifier for industrial application[J]. Proceedings of SPIE, 1008, 100821F(2017).
[58] Rudenkov A S, Kisel V, Yasukevich A S et al. Yb 3+∶CaYAlO4-based chirped pulse regenerative amplifier[J]. Optics Letters, 41, 2249-2252(2016).
[61] Rudenkov A S, Kisel V E, Gorbachenya K N et al. Growth, spectroscopy and high power laser operation of Yb∶YAl3(BO3)4 crystal: continuous-wave, mode-locking and chirped pulse regenerative amplification[J]. Optical Materials, 89, 261-267(2019).
[63] Caracciolo E, Pirzio F, Kemnitzer M et al. 42 W femtosecond Yb∶Lu2O3 regenerative amplifier[J]. Optics Letters, 41, 3395-3398(2016).
[64] Huynh J, Smrž M, Miura T et al. Femtosecond Yb∶YGAG ceramic slab regenerative amplifier[J]. Optical Materials Express, 8, 615-621(2018).
[65] Moran B D, Brent Dane C, Crane J K et al. Suppression of parasitics and pencil beams in the high-gain national ignition facility multipass preamplifier[J]. Proceedings of SPIE, 3264, 56-64(1998).
[66] Zhang Z G[M]. Femtosecond laser technology (optics and photonics series)(2011).
[67] Stuart B C, Feit M D, Rubenchik A M et al. Laser-induced damage in dielectrics with nanosecond-to-subpicosecond pulses[J]. Physical Review Letters, 74, 2248-2251(1994).
[68] Huang Y X. Study on slab laser amplifiers thermal effect influence of transmission characteristics[D]. Chengdu: Southwest Jiaotong University(2012).
[70] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG Innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).
[71] Schulz M, Riedel R, Willner A et al. Yb∶YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification[J]. Optics Letters, 36, 2456-2458(2011).
[72] Zhao Z G, Cong Z H, Liu Z J. Review on ultrashort pulse laser amplifiers based on bulk Yb-doped gain media[J]. Laser & Optoelectronics Progress, 57, 071605(2020).
[73] Sun R Y, Jin D C, Tan F Z et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating[J]. Optics Express, 24, 22806-22812(2016).
[76] Eidam T, Wirth C, Jauregui C et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 19, 13218-13224(2011).
[77] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 19, 10180-10192(2011).
[78] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[80] Délen X, Piehler S, Didierjean J et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 37, 2898-2900(2012).
[81] Zaouter Y, Martial I, Aubry N et al. Direct amplification of ultrashort pulses in μ-pulling-down Yb∶YAG single crystal fibers[J]. Optics Letters, 36, 748-750(2011).
[82] Délen X, Zaouter Y, Martial I et al. Yb∶YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 38, 109-111(2013).
[83] Markovic V, Rohrbacher A, Hofmann P et al. 160 W 800 fs Yb∶YAG single crystal fiber amplifier without CPA[J]. Optics Express, 23, 25883-25888(2015).
[88] Liu Z J, Gao X B, Cong Z H et al. Crystal fiber and crystal-derived fiber preparation and application: a review[J]. Acta Photonica Sinica, 48, 1148003(2019).
[89] Rodin A M, Zopelis E. Comparison of Yb∶YAG single crystal fiber with larger aperture CPA pumped at 940 nm and 969 nm[C]. //2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August 4, 2017, Singapore.(2017).
[90] Kuznetsov I, Mukhin I, Palashov O et al. Thin-rod Yb∶YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 43, 3941-3944(2018).
[94] Hemmer M, Reichert F, Zapata K et al. Picosecond, 115 mJ energy, 200 Hz repetition rate cryogenic Yb∶YAG bulk-amplifier[C]. ]//2015 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2015, San Jose, CA, USA.(2015).
[96] Chang C L, Krogen P, Liang H et al. Multi-mJ, kHz, ps deep-ultraviolet source[J]. Optics Letters, 40, 665-668(2015).
[97] Rand D, Miller D, Ripin D J et al. Cryogenic Yb 3+-doped materials for pulsed solid-state laser applications[J]. Optical Materials Express, 1, 434-450(2011).
[98] Rand D A, Shaw S E, Ochoa J R et al. Picosecond pulses from a cryogenically cooled, composite amplifier using Yb∶YAG and Yb∶GSAG[J]. Optics Letters, 36, 340-342(2011).
[99] Zapata L E, Reichert F, Hemmer M et al. 250 W average power, 100 kHz repetition rate cryogenic Yb∶YAG amplifier for OPCPA pumping[J]. Optics Letters, 41, 492-495(2016).
[104] Kaksis E, Almási G, Fülöp J A et al. 110-mJ 225-fs cryogenically cooled Yb∶CaF2 multipass amplifier[J]. Optics Express, 24, 28915-28922(2016).
Get Citation
Copy Citation Text
Chuan Bai, Wenlong Tian, Geyang Wang, Li Zhen, Rui Xu, Dacheng Zhang, Zhaohua Wang, Jiangfeng Zhu, Zhiyi Wei. Progress on Yb-Doped All-Solid-State Femtosecond Laser Amplifier with High Repetition Rate[J]. Chinese Journal of Lasers, 2021, 48(5): 0501005
Category: laser devices and laser physics
Received: Nov. 2, 2020
Accepted: Dec. 21, 2020
Published Online: Mar. 12, 2021
The Author Email: Zhu Jiangfeng (jfzhu@xidian.edu.cn)