Chinese Journal of Lasers, Volume. 51, Issue 9, 0907005(2024)

Advances in Photoacoustic Skin Imaging

Haigang Ma1,3、*, Sifan Gao1,2, Yuxin Sun1,2, Haixia Qiu4, Ying Gu4, and Qinghua Huang1,2、**
Author Affiliations
  • 1Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, Guangdong, China
  • 2School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
  • 3School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • 4Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing 100853, China
  • show less
    References(186)

    [1] Madison K C. Barrier function of the skin: “La Raison d'Être” of the epidermis[J]. Journal of Investigative Dermatology, 121, 231-241(2003).

    [2] Proksch E, Brandner J M, Jensen J M. The skin: an indispensable barrier[J]. Experimental Dermatology, 17, 1063-1072(2008).

    [3] Lai-Cheong J E, McGrath J A. Structure and function of skin, hair and nails[J]. Medicine, 49, 337-342(2021).

    [4] Seth D, Cheldize K, Brown D et al. Global burden of skin disease: inequities and innovations[J]. Current Dermatology Reports, 6, 204-210(2017).

    [5] Raza K, Thambyrajah J, Townend J N et al. Suppression of inflammation in primary systemic vasculitis restores vascular endothelial function: lessons for atherosclerotic disease?[J]. Circulation, 102, 1470-1472(2000).

    [6] Oh J T, Li M L, Zhang H F et al. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy[J]. Journal of Biomedical Optics, 11, 034032(2006).

    [7] Mallidi S, Luke G P, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance[J]. Trends in Biotechnology, 29, 213-221(2011).

    [8] Steingräber A K, Schelhaas S, Faust A et al. Molecular imaging reveals time course of matrix metalloproteinase activity in acute cutaneous vasculitis in vivo[J]. Experimental Dermatology, 22, 730-735(2013).

    [9] Yélamos O, Braun R P, Liopyris K et al. Dermoscopy and dermatopathology correlates of cutaneous neoplasms[J]. Journal of the American Academy of Dermatology, 80, 341-363(2019).

    [10] Pichi F, Invernizzi A, Tucker W R et al. Optical coherence tomography diagnostic signs in posterior uveitis[J]. Progress in Retinal and Eye Research, 75, 100797(2020).

    [11] Elliott A D. Confocal microscopy: principles and modern practices[J]. Current Protocols in Cytometry, 92, e68(2020).

    [12] Liu Z H, Lu X Y, Villette V et al. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy[J]. Cell, 185, 3408-3425(2022).

    [13] Li D W, Humayun L, Vienneau E et al. Seeing through the skin: photoacoustic tomography of skin vasculature and beyond[J]. JID Innovations, 1, 100039(2021).

    [14] Christensen-Jeffries K, Couture O, Dayton P A et al. Super-resolution ultrasound imaging[J]. Ultrasound in Medicine & Biology, 46, 865-891(2020).

    [15] Ghita M A, Caruntu C, Rosca A E et al. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma[J]. Oncology Letters, 11, 3019-3024(2016).

    [16] Shirshin E A, Gurfinkel Y I, Priezzhev A V et al. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization[J]. Scientific Reports, 7, 1171(2017).

    [17] Schuetzenberger K, Pfister M, Messner A et al. Comparison of optical coherence tomography and high frequency ultrasound imaging in mice for the assessment of skin morphology and intradermal volumes[J]. Scientific Reports, 9, 13643(2019).

    [18] Ma H G, Cheng Z W, Wang Z Y et al. Switchable optical and acoustic resolution photoacoustic dermoscope dedicated into in vivo biopsy-like of human skin[J]. Applied Physics Letters, 116, 073703(2020).

    [19] Kratkiewicz K, Manwar R, Rajabi-Estarabadi A et al. Photoacoustic/ultrasound/optical coherence tomography evaluation of melanoma lesion and healthy skin in a swine model[J]. Sensors, 19, 2815(2019).

    [21] Mohammadi-Nejad A R, Mahmoudzadeh M, Hassanpour M S et al. Neonatal brain resting-state functional connectivity imaging modalities[J]. Photoacoustics, 10, 1-19(2018).

    [22] Wang L V, Wu H I, Masters B R. Biomedical optics, principles and imaging[J]. Journal of Biomedical Optics, 13, 049902(2008).

    [23] Xia J, Yao J J, Wang L V. Photoacoustic tomography: principles and advances[J]. Electromagnetic Waves, 147, 1-22(2014).

    [24] Wang Z, Yang F, Ma H et al. Bifocal 532/1064 nm alternately illuminated photoacoustic microscopy for capturing deep vascular morphology in human skin[J]. Journal of the European Academy of Dermatology and Venereology, 36, 51-59(2022).

    [25] Zhang Z H, Chen W, Cui D D et al. Collagen fiber anisotropy characterization by polarized photoacoustic imaging for just-in-time quantitative evaluation of burn severity[J]. Photonics Research, 11, 817-828(2023).

    [26] Graham M T, Sharma A, Padovano W M et al. Optical absorption spectra and corresponding in vivo photoacoustic visualization of exposed peripheral nerves[J]. Journal of Biomedical Optics, 28, 097001(2023).

    [27] Pan S, Wang L, Ma Y Z et al. Photoacoustic-enabled automatic vascular navigation: accurate and naked-eye real-time visualization of deep-seated vessels[J]. Advanced Photonics Nexus, 2, 046001(2023).

    [28] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [29] Gao S, Tsumura R, Vang D P et al. Acoustic-resolution photoacoustic microscope based on compact and low-cost delta configuration actuator[J]. Ultrasonics, 118, 106549(2022).

    [30] Le T D, Min J J, Lee C. Enhanced resolution and sensitivity acoustic-resolution photoacoustic microscopy with semi/unsupervised GANs[J]. Scientific Reports, 13, 13423(2023).

    [31] Bi R Z, Balasundaram G, Jeon S et al. Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma[J]. Journal of Biophotonics, 11, e201700327(2018).

    [32] Bi R Z, Dinish U S, Goh C C et al. In vivo label-free functional photoacoustic monitoring of ischemic reperfusion[J]. Journal of Biophotonics, 12, e201800454(2019).

    [33] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 36, 1134-1136(2011).

    [34] Attia A B E, Balasundaram G, Moothanchery M et al. A review of clinical photoacoustic imaging: current and future trends[J]. Photoacoustics, 16, 100144(2019).

    [35] Chuangsuwanich T, Moothanchery M, Yan A T C et al. Photoacoustic imaging of lamina cribrosa microcapillaries in porcine eyes[J]. Applied Optics, 57, 4865-4871(2018).

    [36] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 30, 625-627(2005).

    [37] Zhang J H, Chen N B, Wang B Q et al. Advances in photoacoustic microscopy technique[J]. Journal of Data Acquisition and Processing, 34, 771-788(2019).

    [38] Maslov K, Zhang H F, Hu S et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 33, 929-931(2008).

    [39] Zhang H F, Maslov K, Stoica G et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 24, 848-851(2006).

    [40] Zeng S L, Liu L J, Chen T et al. Acoustic-resolution photoacoustic microscopy with dual-sided illumination[J]. Chinese Journal of Lasers, 49, 1507201(2022).

    [41] Wang C C, Guo L L, Wang G et al. In-vivo imaging of melanoma with simultaneous dual-wavelength acoustic-resolution-based photoacoustic/ultrasound microscopy[J]. Applied Optics, 60, 3772-3778(2021).

    [42] Ma H G, Cheng Z W, Wang Z Y et al. Fast controllable confocal focus photoacoustic microscopy using a synchronous zoom opto-sono objective[J]. Optics Letters, 44, 1880-1883(2019).

    [43] Ma H G, Cheng Z W, Wang Z Y et al. Quantitative and anatomical imaging of dermal angiopathy by noninvasive photoacoustic microscopic biopsy[J]. Biomedical Optics Express, 12, 6300-6316(2021).

    [44] Cheng Z W, Ma H G, Wang Z Y et al. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy[J]. Frontiers of Optoelectronics, 13, 307-317(2020).

    [45] Zhang W Y, Ma H G, Cheng Z W et al. High-speed dual-view photoacoustic imaging pen[J]. Optics Letters, 45, 1599-1602(2020).

    [46] Ma H G, Wang Z Y, Cheng Z W et al. Multiscale confocal photoacoustic dermoscopy to evaluate skin health[J]. Quantitative Imaging in Medicine and Surgery, 12, 2696-2708(2022).

    [47] Yang J G, Choi S, Kim C. Practical review on photoacoustic computed tomography using curved ultrasound array transducer[J]. Biomedical Engineering Letters, 12, 19-35(2022).

    [48] Zhang E, Laufer J, Beard P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues[J]. Applied Optics, 47, 561-577(2008).

    [49] Song L, Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 36, 1236-1238(2011).

    [50] Li G, Maslov K I, Wang L V. Reflection-mode multifocal optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 18, 030501(2013).

    [51] Ma H G, Yang S H, Cheng Z W et al. Photoacoustic confocal dermoscope with a waterless coupling and impedance matching opto-sono probe[J]. Optics Letters, 42, 2342-2345(2017).

    [52] Cheng Z W, Ma H G, Wang Z Y et al. 3D depth-coded photoacoustic microscopy with a large field of view for human skin imaging[J]. Chinese Optics Letters, 16, 081701(2018).

    [53] Ma H G, Cheng Z W, Wang Z Y et al. Fast linear confocal scanning photoacoustic dermoscopy for non-invasive assessment of chromatodermatosis[J]. Applied Physics Letters, 113, 083704(2018).

    [54] Zhang W Y, Ma H G, Cheng Z W et al. Miniaturized photoacoustic probe for in vivo imaging of subcutaneous microvessels within human skin[J]. Quantitative Imaging in Medicine and Surgery, 9, 807-814(2019).

    [55] Ma H G, Xiong K D, Wu J W et al. Noncontact photoacoustic angiography with an air-coupled ultrasonic transducer for evaluation of burn injury[J]. Applied Physics Letters, 114, 133701(2019).

    [56] Chen R M, He Y, Shi J H et al. Transparent high-frequency ultrasonic transducer for photoacoustic microscopy application[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 1848-1853(2020).

    [57] Dangi A, Cheng C Y, Agrawal S et al. A photoacoustic imaging device using piezoelectric micromachined ultrasound transducers (PMUTs)[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 801-809(2020).

    [58] Wang Z Y, Yang F, Ma H G et al. Photoacoustic and ultrasound (PAUS) dermoscope with high sensitivity and penetration depth by using a bimorph transducer[J]. Journal of Biophotonics, 13, e202000145(2020).

    [59] Ma H G, Ding R X, Huang Q H. 3D confocal photoacoustic dermoscopy using a multifunctional sono-opto probe[C](2021).

    [60] Xie Z X, Jiao S L, Zhang H F et al. Laser-scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 34, 1771-1773(2009).

    [61] Rao B, Li L, Maslov K et al. Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging[J]. Optics Letters, 35, 1521-1523(2010).

    [62] Yao J J, Huang C H, Wang L D et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror[J]. Journal of Biomedical Optics, 17, 080505(2012).

    [63] Yang F, Wang Z Y, Zhang W Y et al. Wide-field monitoring and real-time local recording of microvascular networks on small animals with a dual-raster-scanned photoacoustic microscope[J]. Journal of Biophotonics, 13, e202000022(2020).

    [64] Zhou Y Y, Liang S Y, Li M S et al. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation[J]. Journal of Biophotonics, 13, e201960229(2020).

    [65] Lan B X, Liu W, Wang Y C et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics[J]. Biomedical Optics Express, 9, 4689-4701(2018).

    [66] Li L, Yeh C, Hu S et al. Fully motorized optical-resolution photoacoustic microscopy[J]. Optics Letters, 39, 2117-2120(2014).

    [67] Moothanchery M, Bi R Z, Kim J Y et al. High-speed simultaneous multiscale photoacoustic microscopy[J]. Journal of Biomedical Optics, 24, 086001(2019).

    [68] Nagae K, Asao Y, Sudo Y et al. Real-time 3D photoacoustic visualization system with a wide field of view for imaging human limbs[J]. F1000Research, 7, 1813(2018).

    [69] Liu N, Chen Z J, Xing D. Integrated photoacoustic and hyperspectral dual-modality microscopy for co-imaging of melanoma and cutaneous squamous cell carcinoma in vivo[J]. Journal of Biophotonics, 13, e202000105(2020).

    [70] Zhou W T, Chen Z J, Zhou Q et al. Optical biopsy of melanoma and basal cell carcinoma progression by noncontact photoacoustic and optical coherence tomography: in vivo multi-parametric characterizing tumor microenvironment[J]. IEEE Transactions on Medical Imaging, 39, 1967-1974(2020).

    [71] Park J, Park B, Kim T Y et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e1920879118(2021).

    [72] Tao C, Yin J, Liu X J. Photoacoustic imaging: a powerful tool for capturing chemical information in tissue[J]. Journal of Data Acquisition and Processing, 30, 289-298(2015).

    [73] Zhong H T, Duan T Y, Lan H R et al. Review of low-cost photoacoustic sensing and imaging based on laser diode and light-emitting diode[J]. Sensors, 18, 2264(2018).

    [74] Daoudi K, van den Berg P J, Rabot O et al. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging[J]. Optics Express, 22, 26365-26374(2014).

    [75] Allen T J, Beard P C. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics[J]. Biomedical Optics Express, 7, 1260-1270(2016).

    [76] Agrawal S, Yang X Y, Albahrani H et al. Low-cost photoacoustic computed tomography system using light-emitting-diodes[J]. Proceedings of SPIE, 11240, 1124058(2020).

    [77] Agrawal S, Singh M K A, Yang X Y et al. Photoacoustic imaging capabilities of light emitting diodes (LED) and laser sources: a comparison study[J]. Proceedings of SPIE, 11240, 1124059(2020).

    [78] Tsunoi Y, Sato N, Nishidate I et al. Burn depth assessment by dual-wavelength light emitting diodes-excited photoacoustic imaging in rats[J]. Wound Repair and Regeneration, 31, 69-76(2023).

    [79] Sun M J, Hu D P, Zhou W X et al. 3D photoacoustic tomography system based on full-view illumination and ultrasound detection[J]. Applied Sciences, 9, 1904(2019).

    [80] Manwar R, Lara J B, Prakash R et al. Randomized multi-angle illumination for improved linear array photoacoustic computed tomography in brain[J]. Journal of Biophotonics, 15, e202200016(2022).

    [81] Zafar M, Kratkiewicz K, Manwar R et al. Development of low-cost fast photoacoustic computed tomography: system characterization and phantom study[J]. Applied Sciences, 9, 374(2019).

    [82] Na S, Russin J J, Lin L et al. Massively parallel functional photoacoustic computed tomography of the human brain[J]. Nature Biomedical Engineering, 6, 584-592(2022).

    [83] Duan Y H, Cheng Z W, Qiu T S et al. Spherical-matching hyperbolic-array photoacoustic computed tomography[J]. Journal of Biophotonics, 14, e202100023(2021).

    [84] Bai X, Ma J, Li X et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 116, 153701(2020).

    [85] Kratkiewicz K, Manwar R, Zafar M et al. Development of a stationary 3D photoacoustic imaging system using sparse single-element transducers: phantom study[J]. Applied Sciences, 9, 4505(2019).

    [86] Guan B O, Jin L, Ma J et al. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging[J]. Opto-Electronic Advances, 4, 200081(2021).

    [87] Liu Y H, Li C Y, Chen L X et al. Development of attachable transparnet ultrasonic transducer: a versatile photoacoustic imaging device for body sensor network[C], 1424-1427(2021).

    [88] Gateau J, Caballero M Á A, Dima A et al. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals[J]. Medical Physics, 40, 013302(2013).

    [89] Fehm T F, Deán-Ben X L, Ford S J et al. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity[J]. Optica, 3, 1153-1159(2016).

    [90] Stylogiannis A, Prade L, Glasl S et al. Frequency wavelength multiplexed optoacoustic tomography[J]. Nature Communications, 13, 4448(2022).

    [91] Xing B C, He Z Y, Zhou F et al. Automatic force-controlled 3D photoacoustic system for human peripheral vascular imaging[J]. Biomedical Optics Express, 14, 987-1002(2023).

    [92] Tong X, Lin L, Hu P et al. Non-invasive 3D photoacoustic tomography of angiographic anatomy and hemodynamics of fatty livers in rats[J]. Advanced Science, 10, 2205759(2023).

    [93] Lee C, Cho S, Lee D et al. Panoramic volumetric clinical handheld photoacoustic and ultrasound imaging[J]. Photoacoustics, 31, 100512(2023).

    [94] Bossy E, Daoudi K, Boccara A C et al. Time reversal of photoacoustic waves[J]. Applied Physics Letters, 89, 184108(2006).

    [95] Mozaffarzadeh M, Mahloojifar A, Orooji M et al. Double-stage delay multiply and sum beamforming algorithm: application to linear-array photoacoustic imaging[J]. IEEE Transactions on Bio-Medical Engineering, 65, 31-42(2018).

    [96] Xu M H, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography[J]. Physical Review E, 71, 016706(2005).

    [97] Huang C, Wang K, Nie L M et al. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media[J]. IEEE Transactions on Medical Imaging, 32, 1097-1110(2013).

    [98] Hoelen C G, de Mul F F. Image reconstruction for photoacoustic scanning of tissue structures[J]. Applied Optics, 39, 5872-5883(2000).

    [99] Buchmann J, Guggenheim J, Zhang E et al. Characterization and modeling of Fabry-Perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging[J]. Applied Optics, 56, 5039-5046(2017).

    [100] Waibel D, Gröhl J, Isensee F et al. Reconstruction of initial pressure from limited view photoacoustic images using deep learning[J]. Proceedings of SPIE, 10494, 104942S(2018).

    [101] Cox B T, Laufer J G, Beard P C. The challenges for quantitative photoacoustic imaging[J]. Proceedings of SPIE, 7177, 717713(2009).

    [102] Li M L, Zhang H E, Maslov K et al. Improved in vivo photoacoustic microscopy based on a virtual-detector concept[J]. Optics Letters, 31, 474-476(2006).

    [103] Deng Z L, Yang X Q, Gong H et al. Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy[J]. Journal of Applied Physics, 109, 104701(2011).

    [104] Deng Z L, Yang X Q, Gong H et al. Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy[J]. Optics Express, 20, 7555-7563(2012).

    [105] Turner J, Estrada H, Kneipp M et al. Universal weighted synthetic aperture focusing technique (W-SAFT) for scanning optoacoustic microscopy[J]. Optica, 4, 770-778(2017).

    [106] Tang H C, Tang Z L, Wu Y B et al. Differential photoacoustic microscopy technique[J]. Optics Letters, 38, 1503-1505(2013).

    [107] Chen J H, Lin R Q, Wang H N et al. Blind-deconvolution optical-resolution photoacoustic microscopy in vivo[J]. Optics Express, 21, 7316-7327(2013).

    [108] Zhu L R, Li L, Gao L et al. Multi-view optical resolution photoacoustic microscopy[J]. Optica, 1, 217-222(2014).

    [109] Wang T X, Sun N D, Chen R M et al. Isotropic-resolution photoacoustic microscopy with multi-angle illumination[J]. Optics Letters, 44, 1-4(2019).

    [110] Schwab J, Antholzer S, Haltmeier M. Learned backprojection for sparse and limited view photoacoustic tomography[J]. Proceedings of SPIE, 10878, 1087837(2019).

    [111] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review[J]. Photoacoustics, 22, 100241(2021).

    [112] Li H S, Schwab J, Antholzer S et al. NETT: solving inverse problems with deep neural networks[J]. Inverse Problems, 36, 065005(2020).

    [113] Hauptmann A, Lucka F, Betcke M et al. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 37, 1382-1393(2018).

    [114] Anas E M A, Zhang H K, Audigier C, Stoyanov D, Taylor Z, Aylward S et al. Robust photoacoustic beamforming using dense convolutional neural networks[M]. Simulation, 11042, 3-11(2018).

    [115] Lan H R, Yang C C, Jiang D H et al. Reconstruct the photoacoustic image based on deep learning with multi-frequency ring-shape transducer array[C], 7115-7118(2019).

    [116] Feng J C, Deng J G, Li Z et al. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging[J]. Biomedical Optics Express, 11, 5321-5340(2020).

    [117] DiSpirito A, Li D W, Vu T et al. Reconstructing undersampled photoacoustic microscopy images using deep learning[J]. IEEE Transactions on Medical Imaging, 40, 562-570(2021).

    [118] Zhang H J, Bo W, Wang D P et al. Deep-E: a fully-dense neural network for improving the elevation resolution in linear-array-based photoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 41, 1279-1288(2022).

    [119] Zheng W H, Zhang H J, Huang C Q et al. Deep-E enhanced photoacoustic tomography using three-dimensional reconstruction for high-quality vascular imaging[J]. Sensors, 22, 7725(2022).

    [120] Meng J, Liu C B, Zheng J X et al. Compressed sensing based virtual-detector photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 19, 036003(2014).

    [121] Alshaya A, Harput S, Cowell D M J et al. Elevation resolution enhancement in 3D photoacoustic imaging using FDMAS beamforming[C](2017).

    [122] Li S H, Wang Z Z, Chen B F et al. High-resolution 3D fusion method for optical-resolution photoacoustic microscopy using deep learning[J]. Proceedings of SPIE, 11914, 119140O(2021).

    [123] Zhang H F, Maslov K, Wang L V. Automatic algorithm for skin profile detection in photoacoustic microscopy[J]. Journal of Biomedical Optics, 14, 024050(2009).

    [124] Shi J H, Wang L D, Noordam C et al. Bessel beam Grueneisen photoacoustic microscopy with extended depth of field[J]. Proceedings of SPIE, 9708, 97083H(2016).

    [125] Cao X J, Li Z H, Song X L. Three-dimensional high-resolution information fusion method for optical-resolution photoacoustic microscopy using principal component analysis transform[J]. Proceedings of SPIE, 11914, 119141H(2021).

    [126] Chen B F, Li S H, Wang Z Z et al. A novel 3D fusion method for the depth-of-field enhancement in optical-resolution photoacoustic microscopy based on cross bilateral filter algorithm[J]. Proceedings of SPIE, 11914, 119141E(2021).

    [127] Li S H, Wang Z Z, Gu C H et al. Extended depth of field photoacoustic microscopy using image fusion based on deep learning[J]. Proceedings of SPIE, 11874, 118740N(2021).

    [128] Yazdani A, Agrawal S, Johnstonbaugh K et al. Simultaneous denoising and localization network for photoacoustic target localization[J]. IEEE Transactions on Medical Imaging, 40, 2367-2379(2021).

    [129] Meng J, Zhang X T, Liu L J et al. Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network[J]. Biomedical Optics Express, 13, 4386-4397(2022).

    [130] Gao Y, Feng T, Qiu H X et al. 4D spectral-spatial computational photoacoustic dermoscopy[J]. Photoacoustics, 34, 100572(2023).

    [131] Song X L, Wei J S, Song L F. Synthetic large volumetric optical-resolution photoacoustic microscopy using morphological pyramid fusion[J]. Proceedings of SPIE, 11634, 116340T(2021).

    [132] Song X L. Computed extended depth of field photoacoustic microscopy using ratio of low-pass pyramid fusion[J]. Proceedings of SPIE, 11756, 1175619(2021).

    [133] Li Z H, Cao X J, Song X L. High-resolution 3D information fusion for photoacoustic microscopy using Laplace pyramid transform[J]. Proceedings of SPIE, 11871, 1187110(2021).

    [134] Liao C K, Li M L, Li P C. Optoacoustic imaging with synthetic aperture focusing and coherence weighting[J]. Optics Letters, 29, 2506-2508(2004).

    [135] Park S, Karpiouk A B, Aglyamov S R et al. Adaptive beamforming for photoacoustic imaging[J]. Optics Letters, 33, 1291-1293(2008).

    [136] Rejesh N A, Pullagurla H, Pramanik M. Deconvolution-based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 30, 1994-2001(2013).

    [137] Wang D P, Wang Y H, Zhou Y et al. Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography[J]. Biomedical Optics Express, 7, 1957-1965(2016).

    [138] Cheng Z W, Ma H G, Wang Z Y et al. Subpixel and on-line motion correction for photoacoustic dermoscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6800408(2021).

    [139] Feng T, Zhu Y H, Gao X X et al. Nakagami statistics-based photoacoustic spectroscopy used for label-free assessment of bone tissue[J]. Optics Letters, 48, 656-659(2023).

    [140] Hakakzadeh S, Amjadian M, Zhang Y C et al. Signal restoration algorithm for photoacoustic imaging systems[J]. Biomedical Optics Express, 14, 651-666(2023).

    [141] Allman D, Reiter A, Bell M A L. Photoacoustic source detection and reflection artifact removal enabled by deep learning[J]. IEEE Transactions on Medical Imaging, 37, 1464-1477(2018).

    [142] Lan H R, Jiang D H, Yang C C et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo[J]. Photoacoustics, 20, 100197(2020).

    [143] Hakakzadeh S, Kavehvash Z, Pramanik M. Artifact removal factor for circular-view photoacoustic tomography[C](2022).

    [144] Guan S, Khan A A, Sikdar S et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics, 24, 568-576(2020).

    [145] Shahid H, Yue Y T, Khalid A et al. Batch renormalization accumulated residual U-network for artifacts removal in photoacoustic imaging[C](2021).

    [146] Guo M J, Lan H R, Yang C C et al. AS-net: fast photoacoustic reconstruction with multi-feature fusion from sparse data[J]. IEEE Transactions on Computational Imaging, 8, 215-223(2022).

    [147] Lu M Y, Liu X, Liu C C et al. Artifact removal in photoacoustic tomography with an unsupervised method[J]. Biomedical Optics Express, 12, 6284-6299(2021).

    [148] Raumonen P, Tarvainen T. Segmentation of vessel structures from photoacoustic images with reliability assessment[J]. Biomedical Optics Express, 9, 2887-2904(2018).

    [149] Ly C D, Nguyen V T, Vo T H et al. Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning[J]. Photoacoustics, 25, 100310(2022).

    [150] Davis L E, Shalin S C, Tackett A J. Current state of melanoma diagnosis and treatment[J]. Cancer Biology & Therapy, 20, 1366-1379(2019).

    [151] Hieken T J, Hernández-Irizarry R, Boll J M et al. Accuracy of diagnostic biopsy for cutaneous melanoma: implications for surgical oncologists[J]. International Journal of Surgical Oncology, 2013, 196493(2013).

    [152] Neuschmelting V, Lockau H, Ntziachristos V et al. Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model[J]. Radiology, 280, 137-150(2016).

    [153] Stoffels I, Morscher S, Helfrich I et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging[J]. Science Translational Medicine, 7, 317ra199(2015).

    [154] Zhou Y, Li G, Zhu L R et al. Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo[J]. Journal of Biophotonics, 8, 961-967(2015).

    [155] Zhou Y, Xing W X, Maslov K I et al. Handheld photoacoustic microscopy to detect melanoma depth in vivo[J]. Optics Letters, 39, 4731-4734(2014).

    [156] Zhou W T, Chen Z J, Yang S H et al. Optical biopsy approach to basal cell carcinoma and melanoma based on all-optically integrated photoacoustic and optical coherence tomography[J]. Optics Letters, 42, 2145-2148(2017).

    [157] Breathnach A, Concannon E, Dorairaj J J et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging[J]. Journal of Medical Imaging, 5, 015004(2018).

    [158] Argenziano G, Zalaudek I, Corona R et al. Vascular structures in skin tumors: a dermoscopy study[J]. Archives of Dermatology, 140, 1485-1489(2004).

    [159] Wang L V. Prospects of photoacoustic tomography[J]. Medical Physics, 35, 5758-5767(2008).

    [160] Wang Y T, Xu D, Yang S H et al. Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector[J]. Biomedical Optics Express, 7, 279-286(2016).

    [161] Omar M, Schwarz M, Soliman D et al. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM)[J]. Neoplasia, 17, 208-214(2015).

    [162] Chuah S Y, Attia A B E, Long V et al. Structural and functional 3D mapping of skin tumours with non-invasive multispectral optoacoustic tomography[J]. Skin Research and Technology, 23, 221-226(2017).

    [163] Lee C, Choi W, Kim J et al. Three-dimensional clinical handheld photoacoustic/ultrasound scanner[J]. Photoacoustics, 18, 100173(2020).

    [164] Stridh M T, Hult J, Merdasa A et al. Photoacoustic imaging of periorbital skin cancer ex vivo: unique spectral signatures of malignant melanoma, basal, and squamous cell carcinoma[J]. Biomedical Optics Express, 13, 410-425(2021).

    [165] Hult J, Dahlstrand U, Merdasa A et al. Unique spectral signature of human cutaneous squamous cell carcinoma by photoacoustic imaging[J]. Journal of Biophotonics, 13, e201960212(2020).

    [166] Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer[J]. British Journal of Dermatology, 166, 1069-1080(2012).

    [167] Cameron M C, Lee E, Hibler B P et al. Basal cell carcinoma: epidemiology; pathophysiology; clinical and histological subtypes; and disease associations[J]. Journal of the American Academy of Dermatology, 80, 303-317(2019).

    [168] Mohan S V, Chang A L S. Advanced basal cell carcinoma: epidemiology and therapeutic innovations[J]. Current Dermatology Reports, 3, 40-45(2014).

    [169] Lewis K G, Weinstock M A. Nonmelanoma skin cancer mortality (1988—2000): the Rhode Island follow-back study[J]. Archives of Dermatology, 140, 837-842(2004).

    [170] Dahlstrand U, Sheikh R, Merdasa A et al. Photoacoustic imaging for three-dimensional visualization and delineation of basal cell carcinoma in patients[J]. Photoacoustics, 18, 100187(2020).

    [171] Zalaudek I, Kreusch J, Giacomel J et al. How to diagnose nonpigmented skin tumors: a review of vascular structures seen with dermoscopy: part I. Melanocytic skin tumors[J]. Journal of the American Academy of Dermatology, 63, 361-374(2010).

    [172] Jain R K, Safabakhsh N, Sckell A et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 95, 10820-10825(1998).

    [173] Bullitt E, Gerig G, Pizer S M et al. Measuring tortuosity of the intracerebral vasculature from MRA images[J]. IEEE Transactions on Medical Imaging, 22, 1163-1171(2003).

    [174] Chuah S Y, Attia A B E, Ho C J H et al. Volumetric multispectral optoacoustic tomography for 3-dimensional reconstruction of skin tumors: a further evaluation with histopathologic correlation[J]. The Journal of Investigative Dermatology, 139, 481-485(2019).

    [175] Zhou Y, Tripathi S V, Rosman I et al. Noninvasive determination of melanoma depth using a handheld photoacoustic probe[J]. The Journal of Investigative Dermatology, 137, 1370-1372(2017).

    [176] Sheikh R, Cinthio M, Dahlstrand U et al. Clinical translation of a novel photoacoustic imaging system for examining the temporal artery[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 472-480(2019).

    [177] Rendon A, Schäkel K. Psoriasis pathogenesis and treatment[J]. International Journal of Molecular Sciences, 20, 1475(2019).

    [178] Heidenreich R, Röcken M, Ghoreschi K. Angiogenesis drives psoriasis pathogenesis[J]. International Journal of Experimental Pathology, 90, 232-248(2009).

    [179] Braverman I M, Yen A. Ultrastructure of the capillary loops in the dermal papillae of psoriasis[J]. Journal of Investigative Dermatology, 68, 53-60(1977).

    [180] Aguirre J, Schwarz M, Garzorz N et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy[J]. Nature Biomedical Engineering, 1, 68(2017).

    [181] Hindelang B, Nau T, Englert L et al. Enabling precision monitoring of psoriasis treatment by optoacoustic mesoscopy[J]. Science Translational Medicine, 14, eabm8059(2022).

    [182] Schramm J C, Dinh T, Veves A. Microvascular changes in the diabetic foot[J]. The International Journal of Lower Extremity Wounds, 5, 149-159(2006).

    [183] Yang J G, Zhang G, Shang Q Q et al. Detecting hemodynamic changes in the foot vessels of diabetic patients by photoacoustic tomography[J]. Journal of Biophotonics, 13, e202000011(2020).

    [184] de Schepper S, Boucneau J, Vander Haeghen Y et al. Café-au-lait spots in neurofibromatosis type 1 and in healthy control individuals: hyperpigmentation of a different kind?[J]. Archives of Dermatological Research, 297, 439-449(2006).

    [185] Passeron T. Melasma pathogenesis and influencing factors: an overview of the latest research[J]. Journal of the European Academy of Dermatology and Venereology, 27, 5-6(2012).

    [186] Wang Z Y, Chen Y Y, Pan S et al. Quantitative classification of melasma with photoacoustic microscopy: a pilot study[J]. Journal of Biomedical Optics, 29, S11504(2024).

    [187] Palma-Chavez J, Pfefer T J, Agrawal A et al. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment[J]. Journal of Biomedical Optics, 26, 090901(2021).

    Tools

    Get Citation

    Copy Citation Text

    Haigang Ma, Sifan Gao, Yuxin Sun, Haixia Qiu, Ying Gu, Qinghua Huang. Advances in Photoacoustic Skin Imaging[J]. Chinese Journal of Lasers, 2024, 51(9): 0907005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Oct. 30, 2023

    Accepted: Dec. 12, 2023

    Published Online: Apr. 28, 2024

    The Author Email: Haigang Ma (mahaigang@njust.edu.cn), Qinghua Huang (qhhuang@nwpu.edu.cn)

    DOI:10.3788/CJL231336

    CSTR:32183.14.CJL231336

    Topics