Acta Photonica Sinica, Volume. 53, Issue 8, 0823002(2024)
Design of Flexible and Transparent Metamaterial Absorber with Broadband
[1] QIAN C, CHEN H S. A perspective on the next generation of invisibility cloaks-Intelligent cloaks[J]. Applied Physics Letters, 118, 180501(2021).
[2] ZHANG X G, SUN Y L, YU Q et al. Smart doppler cloak operating in broad band and full polarizations[J]. Advanced Materials, 33, 2007966(2021).
[3] LI X Y, CHEN C, GUO Y H et al. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state[J]. Advanced Functional Materials, 34, 2311286(2023).
[4] REN Zhi, LI Wenwen, LIN Junzhe et al. Research on beam deflector and super lens based on u-shaped hyperstructured surface[J]. Laser & Optoelectronics Progress, 59, 1924001(2022).
[5] XU Cuilian, MENG Yueyu, WANG Jiafu et al. Optically transparent hybrid metasurfaces for low infrared emission and wideband microwave absorption[J]. Acta Photonica Sinica, 50, 0416001(2021).
[6] ZHOU W, ZHU Z H, BAI R R et al. Broadband incident angle independent magnetic composite metamaterial absorber with C-band absorption[J]. Optics and Laser Technology, 153, 108031(2022).
[7] DENG G S, LV K, SUN H X et al. An ultra-broadband and optically transparent metamaterial absorber based on multilayer indium-tin-oxide structure[J]. Journal of Physics D: Applied Physics, 54, 165301(2021).
[8] KINDNESS S J, ALMOND N W, MICHAILOW W et al. A terahertz chiral metamaterial modulator[J]. Advanced Optical Materials, 8, 2000581(2020).
[9] XU Y L, ZHANG C, LI W M et al. High sensitivity ultraviolet graphene-metamaterial integrated electro-optic modulator enhanced by superlubricity[J]. Nanophotonics, 11, 3547-3557(2022).
[10] LI D D, MA H B, ZHAN Q W et al. High-speed efficient on-chip electro-optic modulator based on midinfrared hyperbolic metamaterials[J]. Physical Review Applied, 16, 034002(2021).
[11] HUI W H, GUO Y, ZHAO X P. Polarization-tunable microstrip antenna based on double V-type metamaterials cover for microwave energy harvesting[J]. IEEE Antennas and Wireless Propagation Letters, 22, 729-733(2023).
[12] TIAN Y, GAO H T, YAO W et al. Out-of-band RCS reduction of HF/VHF whip antenna using curved AMC structures[J]. IEEE Transactions on Antennas and Propagation, 70, 10086-10094(2022).
[13] SAKLI H, ABDELHAMID C, ESSID C et al. Metamaterial-based antenna performance enhancement for MIMO system applications[J]. IEEE Access, 9, 38546-38556(2021).
[14] CHEN H W, GUO L, LI M Y et al. Metamaterial-inspired radiofrequency (RF) shield with reduced specific absorption rate (SAR) and improved transmit efficiency for UHF MRI[J]. IEEE Transactions on Biomedical Engineering, 68, 1178-1189(2021).
[15] HE W J, FENG Y, HU Z D et al. Sensors with multifold nanorod metasurfaces array based on hyperbolic metamaterials[J]. IEEE Sensors Journal, 20, 1801-1806(2020).
[16] QIU Yanqing, WANG Gangqi, LANG Tingting. Terahertz metamaterial biosensor based on double split-ring structure[J]. Acta Optical Sinica, 43, 0428002(2023).
[17] ZHENG Zhuorui, ZHONG Hui, NIE Yongxiao et al. Research of bovine serum albumin sensor based on terahertz metamaterials[J]. Chinese Journal of Lasers, 50, 1714017(2023).
[18] YU D W, DONG Y F, ZHANG Z H et al. High-selectivity frequency-selective rasorber with tunable absorptivity[J]. IEEE Transactions on Antennas and Propagation, 71, 3620-3630(2023).
[19] YAN X X, KONG X K, WANG Q et al. Water-based reconfigurable frequency selective rasorber with thermally tunable absorption band[J]. IEEE Transactions on Antennas and Propagation, 68, 6162-6171(2020).
[20] WANG Yang, XUAN Xuefei, ZHU Lu et al. Design of ultra-broadband and high-absorption metamaterial solar absorber[J]. Chinese Journal of Lasers, 49, 0903001(2022).
[21] LUO Z J, SHAN X, REN X Y et al. Active metasurface absorber for intensity-dependent surface-wave shielding[J]. IEEE Transaction on Antennas and Propagation, 71, 5795-5804(2023).
[22] WANG B X, HE Y H, LOU P C et al. Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators[J]. Results in Physics, 16, 102930(2020).
[23] ZHANG Z L, ZHANG L, CHEN X Q et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band[J]. Journal of Magnetism and Magnetic Materials, 497, 166075(2020).
[24] WANG Y, YANG H L, WU J et al. A reconfigurable ultra-broadband transparent absorber combined with ITO and structural water[J]. Nanoscale, 15, 16144-16154(2023).
[25] CHEN Y, CHEN K J, ZHANG D J et al. Ultrabroadband microwave absorber based on 3D water microchannels[J]. Photonics Research, 9, 1391-1396(2021).
[26] GAO Z Q, XU C L, TIAN X X et al. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity[J]. Optics Express, 29, 22108-22116(2021).
[27] REN Z R, YIN H C, SUN X et al. An angularly stable and optically transparent broadband conformal microwave absorber using “diamond-shaped” pattern[J]. Optical Materials, 131, 112689(2022).
[28] FU C F, ZHANG L, LIU L J et al. RCS reduction on patterned graphene-based transparent flexible metasurface absorber[J]. IEEE Transaction on Antennas and Propagation, 71, 2005-2010(2023).
[29] ASIF KHAN H, MAJEED A, ZAHRA H et al. Transparent conformal metasurface absorber for ultrawideband radar cross section reduction[J]. Journal of Physics D: Applied Physics, 57, 135105(2024).
[30] DONG J, MA Y, WANG M. An ultrawideband miniaturized ultrathin flexible metamaterial absorber using lightweight ITO film[J]. IEEE Antennas and Wireless Propagation Letters, 22, 2970-2974(2023).
[31] XU H F, CHENG J R, HUANG Q et al. Flexible broadband metamaterial absorber in long-wave infrared with visible transparency fabricated by laser direct writing[J]. Optics Letters, 49, 89-92(2024).
[32] DENG Guangsheng, CHEN Wenqing, YU Zhenchun et al. Design and preparation of angle-insensitive broadband metamaterial absorber based on conductive plastic film[J]. Acta Optical Sinica, 42, 221600(2022).
[33] JI S J, REN H L, ZHANG C G et al. Optically transparent conformal ultra-broadband metamaterial absorber based on ITO conductive film[J]. Journal of Physics D: Applied Physics, 56, 425101(2023).
[34] GE J H, ZHANG C, ZHANG Y Q et al. Transparent bilayer ITO metasurface with bidirectional and coherently controlled microwave absorption[J]. Advanced Optical Materials, 11, 2301268(2023).
Get Citation
Copy Citation Text
Xiaojun HUANG, Lina GAO, Miao CAO, Wang YAO, Helin YANG. Design of Flexible and Transparent Metamaterial Absorber with Broadband[J]. Acta Photonica Sinica, 2024, 53(8): 0823002
Category: Optical Device
Received: Jan. 15, 2024
Accepted: Mar. 21, 2024
Published Online: Oct. 15, 2024
The Author Email: Xiaojun HUANG (hxj@xust.edu.cn)