Photonics Research, Volume. 9, Issue 2, B30(2021)

High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm

Chengshuai Yang1, Yunhua Yao1,6、*, Chengzhi Jin1, Dalong Qi1, Fengyan Cao1, Yilin He1, Jiali Yao1, Pengpeng Ding1, Liang Gao2, Tianqing Jia1, Jinyang Liang3, Zhenrong Sun1, and Shian Zhang1,4,5,7、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
  • 2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 3Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec J3X1S2, Canada
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 6e-mail: yhyao@lps.ecnu.edu.cn
  • 7e-mail: sazhang@phy.ecnu.edu.cn
  • show less
    References(62)

    [28] C. Li. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing(2010).

    [31] J. Zhang, B. Ghanem. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1828-1837(2018).

    [32] J. Ma, X. Liu, Z. Shou, X. Yuan. Deep tensor ADMM-net for snapshot compressive imaging. Proceedings of the IEEE International Conference on Computer Vision, 10223-10232(2019).

    [36] L. Wang, C. Sun, Y. Fu, M. H. Kim, H. Huang. Hyperspectral image reconstruction using a deep spatial-spectral prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8032-8041(2019).

    [38] X. Miao, X. Yuan, Y. Pu, V. Athitsos. Lambda-net: reconstruct hyperspectral images from a snapshot measurement. IEEE/CVF International Conference on Computer Vision (ICCV), 4058-4068(2019).

    [42] X. Liu, X. Wang. Fourth-order tensors with multidimensional discrete transforms(2017).

    [44] M. Raydan. Convergence properties of the Barzilai and Borwein gradient method(1991).

    [45] B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee. Enhanced deep residual networks for single image super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 136-144(2017).

    [46] L. Yue, X. Miao, P. Wang, B. Zhang, X. Zhen, X. Cao. Attentional alignment networks. 29th British Machine Vision Conference, 1-14(2018).

    [47] S. Min, X. Chen, Z. Zha, F. Wu, Y. Zhang. A two-stream mutual attention network for semi-supervised biomedical segmentation with noisy labels. Proceedings of the AAAI Conference on Artificial Intelligence, 4578-4585(2019).

    [49] Y. Huang, X. Cao, X. Zhen, J. Han. Attentive temporal pyramid network for dynamic scene classification. Proceedings of the AAAI Conference on Artificial Intelligence, 8497-8504(2019).

    [50] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).

    [51] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, T. Q. Nguyen. An augmented Lagrangian method for video restoration. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 941-944(2011).

    [55] H. Yu, S. Winkler. Image complexity and spatial information. Fifth International Workshop on Quality of Multimedia Experience (QoMEX), 12-17(2013).

    [59] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, A. Ashok. ReconNet: non-iterative reconstruction of images from compressively sensed measurements. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 449-458(2016).

    [62] J. Nocedal, S. Wright. Numerical Optimization(2006).

    CLP Journals

    [1] Xianglei Liu, João Monteiro, Isabela Albuquerque, Yingming Lai, Cheng Jiang, Shian Zhang, Tiago H. Falk, Jinyang Liang, "Single-shot real-time compressed ultrahigh-speed imaging enabled by a snapshot-to-video autoencoder," Photonics Res. 9, 2464 (2021)

    [2] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu, "Deep learning in photonics: introduction," Photonics Res. 9, DLP1 (2021)

    Tools

    Get Citation

    Copy Citation Text

    Chengshuai Yang, Yunhua Yao, Chengzhi Jin, Dalong Qi, Fengyan Cao, Yilin He, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Shian Zhang, "High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm," Photonics Res. 9, B30 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: DEEP LEARNING IN PHOTONICS

    Received: Sep. 15, 2020

    Accepted: Dec. 2, 2020

    Published Online: Jan. 22, 2021

    The Author Email: Yunhua Yao (yhyao@lps.ecnu.edu.cn), Shian Zhang (sazhang@phy.ecnu.edu.cn)

    DOI:10.1364/PRJ.410018

    Topics