Photonics Research, Volume. 9, Issue 2, B30(2021)
High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm
[28] C. Li. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing(2010).
[31] J. Zhang, B. Ghanem. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1828-1837(2018).
[32] J. Ma, X. Liu, Z. Shou, X. Yuan. Deep tensor ADMM-net for snapshot compressive imaging. Proceedings of the IEEE International Conference on Computer Vision, 10223-10232(2019).
[36] L. Wang, C. Sun, Y. Fu, M. H. Kim, H. Huang. Hyperspectral image reconstruction using a deep spatial-spectral prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8032-8041(2019).
[38] X. Miao, X. Yuan, Y. Pu, V. Athitsos. Lambda-net: reconstruct hyperspectral images from a snapshot measurement. IEEE/CVF International Conference on Computer Vision (ICCV), 4058-4068(2019).
[42] X. Liu, X. Wang. Fourth-order tensors with multidimensional discrete transforms(2017).
[44] M. Raydan. Convergence properties of the Barzilai and Borwein gradient method(1991).
[45] B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee. Enhanced deep residual networks for single image super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 136-144(2017).
[46] L. Yue, X. Miao, P. Wang, B. Zhang, X. Zhen, X. Cao. Attentional alignment networks. 29th British Machine Vision Conference, 1-14(2018).
[47] S. Min, X. Chen, Z. Zha, F. Wu, Y. Zhang. A two-stream mutual attention network for semi-supervised biomedical segmentation with noisy labels. Proceedings of the AAAI Conference on Artificial Intelligence, 4578-4585(2019).
[49] Y. Huang, X. Cao, X. Zhen, J. Han. Attentive temporal pyramid network for dynamic scene classification. Proceedings of the AAAI Conference on Artificial Intelligence, 8497-8504(2019).
[50] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).
[51] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, T. Q. Nguyen. An augmented Lagrangian method for video restoration. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 941-944(2011).
[55] H. Yu, S. Winkler. Image complexity and spatial information. Fifth International Workshop on Quality of Multimedia Experience (QoMEX), 12-17(2013).
[59] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, A. Ashok. ReconNet: non-iterative reconstruction of images from compressively sensed measurements. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 449-458(2016).
[62] J. Nocedal, S. Wright. Numerical Optimization(2006).
Get Citation
Copy Citation Text
Chengshuai Yang, Yunhua Yao, Chengzhi Jin, Dalong Qi, Fengyan Cao, Yilin He, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Shian Zhang, "High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm," Photonics Res. 9, B30 (2021)
Special Issue: DEEP LEARNING IN PHOTONICS
Received: Sep. 15, 2020
Accepted: Dec. 2, 2020
Published Online: Jan. 22, 2021
The Author Email: Yunhua Yao (yhyao@lps.ecnu.edu.cn), Shian Zhang (sazhang@phy.ecnu.edu.cn)