Journal of Quantum Optics, Volume. 29, Issue 3, 31003(2023)
Passive Q-switched Laser Based on Perovskite-anodic Alumina Saturable Absorber
[1] [1] MASLOV N A. Ultraviolet pulsed laser-induced fluorescence nonlinearity in optically thick organic samples[J]. Journal of Fluorescence, 2018, 28(2):689-693.DOI: 10.1007/s10895-018-2232-5.
[2] [2] CAI Y K, LUO X C, LIU Z Q, et al. Product and process fingerprint for nanosecond pulsed laser ablated superhydrophobic surface[J]. Micromachines, 2019, 10(3):177. DOI: 10.3390/mi10030177.
[5] [5] BEAUPERE D, FARCY J C. BDN II as a saturable absorber for the 1.315m iodine laser. Non-linear transmission and pulse shortening effects[J]. Optics Communications, 1978, 27(3):410-414. DOI: 10.1016/0030-4018(78)90411-X.
[6] [6] BASIEV T T, ZVEREV P G, PAPASHVILI A G, et al. Temporal and spectral characteristics of a tunable LiF : F2-colour-centre crystal laser[J]. Quantum Electronics, 1997, 27(7):591-595. DOI: 10.1070/QE1997v027n07ABEH001002.
[7] [7] LAN R J, SHEN Y J, REN C, et al. Sub-nanosecond micro laser passively Q-switched by a GaAs saturable absorber[J]. Applied Optics, 2019, 58(16):4533-4537. DOI: 10.1364/AO.58.004533.
[9] [9] BRANDUS C A, GRECULEASA M, BROASCA A, et al. Diode-pumped bifunctional Nd:LGSB laser passively Q-switched by a Cr4+:YAG saturable absorber[J]. Optical Materials Express, 2021, 11(3):685. DOI: 10.1364/OME.416425.
[11] [11] TANG R, GAO Z Y, WU Z M, et al. Output characteristics of diode-pumped passively Q-switched Yb:CaYAlO4 pulsed laser based on a SESAM[J]. Chinese Optics, 2019, 12(1):168-178. DOI: 10.3788/co.20191201.0167.
[12] [12] WEI J C, LI P, et al. Mode-locked fiber laser of 3.5m using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1):011404. DOI: 10.3788/COL202220.011404.
[13] [13] YE P P, ZHU S Q, LI Z, et al. Passively Q-switched dual-wavelength green laser with an Yb:YAG/Cr4+ :YAG/YAG composite crystal[J]. Optics Express, 2017, 25(5):5179-5185. DOI: 10.1364/OE.25.005179.
[14] [14] WANG X, ZHU Y J, JIANG C, et al. InAs/GaAs quantum dot semiconductor saturable absorber for controllable dual-wavelength passively Q-switched fiber laser[J]. Optics Express, 2019, 27(15):20649-20658. DOI: 10.1364/OE.27.020649.
[15] [15] WANG T J, WANG J, WANG Y G, et al. High-power passively Q-switched Nd:GdVO4 laser with a reflective graphene oxide saturable absorber[J]. Chinese Optics Letters, 2019, 17(02):41-45. DOI: 10.3788/COL201917.020009.
[16] [16] LIU L, LI X, ZHANG S, et al. Wavelength-changeable thulium-doped fiber laser based on monolayer graphene[J]. Optics & Laser Technology, 2021, 139(25):106980. DOI: 10.1016/j.optlastec.2021.106980.
[17] [17] LAU K Y, ZULKIFLI M Z, et al. 1.56m and 1.93m synchronized mode-locked fiber laser with graphene saturable absorber[J]. Infrared Physics & Technology, 2021, 112(2):103606. DOI: 10.1016/j.infrared.2020.103606.
[18] [18] ZHAO W F, YU H, LIAO M Z, et al. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking[J]. Semiconductor Science and Technology, 2017, 32(2):025013. DOI: 10.1088/1361-6641/32/2/025013.
[19] [19] WOODWARD R I, HOWE R, RUNCORN T H, et al. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers[J]. Optics Express, 2015, 23(15):20051-20061. DOI: 10.1364/OE.23.020051.
[20] [20] XU B, WANG Y, CHENG Y J, et al. Nanosecond pulse gen-eration in a passively Q-switched Nd:GGG laser at 1331 nm by CVD graphene saturable absorber[J]. Journal of Optics, 2015, 17(10):105501-105507. DOI: 10.1088/2040-8978/17/10/105501.
[21] [21] CHU H W, ZHAO S Z, LI T, et al. Dual-wavelength passively Q-switched Nd, Mg:LiTaO3 laser with a monolayer graphene as saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1):343-347.DOI: 10.1109/JSTQE.2014.2329938.
[22] [22] LI Z Q, CHENG C, DONG N N, et al. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 2017, 5(5):406-410. DOI: 10.1364 /PRJ.5.000406.
[23] [23] ZHANG Y, ZHU J Q, LI P X, et al. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber[J]. Optics Communications, 2018, 413:236-241. DOI: 10.1016/j.optcom.2017.12.053.
[24] [24] LIU W J, LIU M L, LIU B, et al. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers[J]. Optics Express, 2019, 27(5):6689-6699. DOI: 10.1364/OE.27.006689.
[25] [25] ZHANG C X, CHEN Y, FAN T, et al. Sub-hundred nanosecond pulse generation from a black phosphorus Q-switched Er-doped fiber laser[J]. Optics Express, 2020, 28(4):4708-4716. DOI: 10.1364/OE.379828.
[26] [26] XIA F, WANG H, JIA Y, et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5:4458. DOI: 10.1038/ncomms5458.
[27] [27] GIRTAN M. On the electrical and photoelectrical properties of CH3NH3PBI3 perovskites thin films[J]. Solar Energy, 2020, 195:446-453. DOI: 10.1016/j.solener.2019.11.096.
[28] [28] JENA A K, KULKARNI A, MIYASAKA T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects[J]. Chemical Reviews, 2019, 119(5):3036-3103. DOI: 10.1021/acs.chemrev.8b00539.
[29] [29] QUAN L N, RAND B P, FRIEND R H, et al. Perovskites for Next-Generation Optical Sources[J]. Chemical Reviews, 2019, 119(12):7444-7477. DOI: 10.1021/acs.chemrev.9b00107
[30] [30] XING G, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5):476-480. DOI: 10.1038/nmat3911.
[31] [31] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326):722-726. DOI: 10.1126/science.aai9081.
[32] [32] SEOK W, YANG, BYUNG-WOOK, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376. DOI: 10.1126/science.aan2301.
[33] [33] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6:8515. DOI: 10.1038/NCOMMS9515.
[34] [34] WEI H, FANG Y, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5):333. DOI: 10.1038/nphoton.2016.41.
[35] [35] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing Optoelectronic Properties of Metal Halide Perovskites[J]. Chemical Reviews, 2016, 116(21):12956-13008. DOI: 10.1021/acs.chemrev.6b00136.
[36] [36] YAN Z, HU Z, YUE L, et al. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser[J]. Applied Physics Letters, 2016, 108(26):261108. DOI: 10.1088/1674-1056/ab327c.
[37] [37] ZHANG R, FAN J, X ZHANG, et al. Nonlinear Optical Response of Organic-Inorganic Halide Perovskites[J]. ACS Photonics, 2016, 3(3):371-377. DOI: 10.1021/acsphotonics.5b00563.
[38] [38] LI P, YAO C, YANG T, et al. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers[J]. ACS Applied Materials & Interfaces, 2017, 9(14):12759-12765. DOI: 10.1021/acsami.7b01709.
[39] [39] JIANG GB, MIAO LL, YI J, et al. Ultrafast pulse generation from erbium-doped fiber laser modulated by hybrid organic-inorganic halide perovskites[J]. Applied Physics Letters, 2017, 110(16):161111. DOI: 10.1063/1.4981897.
[40] [40] YI J, MIAO L, LI J, et al. Third-order nonlinear optical response of CH3NH3PbI3 perovskite in the mid-infrared regime[J]. Optical Materials Express, 2017, 7(11):3894-3901. DOI: 10.1364/OME.7.003894.
[41] [41] ZHANG Z J, SUCHAN K, LI J, et al. Vertically Aligned CsPbBr3 Nanowire Arrays with Template-Induced Crystal Phase Transition and Stability[J]. The Journal of Physical Chemistry C, 2021, 125(8):4860-4868. DOI: 10.1021/acs.jpcc.0c11217.
Get Citation
Copy Citation Text
GUO Kai-qi, Dai Teng-fei, WEN Fu-zhao-yu, XIE Liang-zhi, YANG Bu-fan, YANG Shi-qi, KONG Chun-xia. Passive Q-switched Laser Based on Perovskite-anodic Alumina Saturable Absorber[J]. Journal of Quantum Optics, 2023, 29(3): 31003
Received: Dec. 1, 2022
Accepted: --
Published Online: Apr. 7, 2024
The Author Email: