Chinese Journal of Lasers, Volume. 50, Issue 2, 0211001(2023)

Spectral Classification and Characteristic Spectral Analysis of Nearshore Aquatic Plants Based on AlexNet

Zongsheng Zheng, Bei Liu*, Peng Lu, Zhenhua Wang, Guoliang Zou, jiahui Zhao, and Yunfei Li
Author Affiliations
  • School of Information, Shanghai Ocean University, Shanghai 201306, China
  • show less
    Figures & Tables(12)
    Four aquatic plants. (a) Pontederia cordata L.; (b) Thalia dealbata; (c) Typha angustifolia L.; (d) Hydrocotyle vulgaris
    Spectral curves of 4 species of aquatic plants. (a) Original spectra; (b) first-order derivative spectra; (c) second-order derivative spectra; (d) first-order derivative logarithm spectra; (e) second-order derivative logarithm spectra
    Gray scale images of 4 aquatic plants. (a) Typha angustifolia L.; (b) Pontederia cordata L.; (c) Hydrocotyle vulgaris; (d) Thalia dealbata
    Spectral identification model of aquatic plants
    Training process diagrams of different models. (a) Training accuracy graph; (b) training loss graph
    Training loss value of each model under different preprocessing methods. (a) CNN3 model; (b) VGG16 model; (c) our model
    Intermediate feature maps. (a) Typha angustifolia L.; (b) Pontederia cordata L.; (c) Hydrocotyle vulgaris; (d) Thalia dealbata
    Feature maps. (a) Typha angustifolia L.; (b) Pontederia cordata L.; (c) Hydrocotyle vulgaris; (d) Thalia dealbata
    • Table 1. Spectral data classification under different models

      View table

      Table 1. Spectral data classification under different models

      ModelTraining speed /(s·epoch-1Testing speed /(frame·s-1Accuracy /%
      CNN35.560.03085.06
      VGG1643.680.04899.48
      Our model13.560.03299.50
    • Table 2. Division of different training sets

      View table

      Table 2. Division of different training sets

      Training data ratio /%Training data quantityTesting data quantity
      401596500
      602394500
      803192500
    • Table 3. Classification accuracy with different training set sizes

      View table

      Table 3. Classification accuracy with different training set sizes

      ModelTraining data ratio /%Accuracy /%

      CNN3

      4080.83
      6084.93
      8085.06

      VGG16

      4097.70
      6098.74
      8099.48

      Our model

      4099.15
      6099.44
      8099.50
    • Table 4. Classification accuracy comparison of three kinds of models before and after sample data preprocessing

      View table

      Table 4. Classification accuracy comparison of three kinds of models before and after sample data preprocessing

      ModelAccuracy /%
      Original dataFirst-order derivativeSecond-order derivativeFirst-order derivative logarithmSecond-order derivative logarithm
      CNN376.6785.0679.5984.7480.21
      VGG1696.4599.4897.9998.4197.20
      Our model97.8099.5098.5699.1098.95
    Tools

    Get Citation

    Copy Citation Text

    Zongsheng Zheng, Bei Liu, Peng Lu, Zhenhua Wang, Guoliang Zou, jiahui Zhao, Yunfei Li. Spectral Classification and Characteristic Spectral Analysis of Nearshore Aquatic Plants Based on AlexNet[J]. Chinese Journal of Lasers, 2023, 50(2): 0211001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: spectroscopy

    Received: Mar. 9, 2022

    Accepted: Apr. 25, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Liu Bei (godbei@foxmail.com)

    DOI:10.3788/CJL220653

    Topics