The research of terahertz (THz) technologies provides fascinating paths for imaging[
Chinese Optics Letters, Volume. 20, Issue 4, 043201(2022)
Spintronic terahertz emitter with integrated electromagnetic control
Spintronic thin films are considered as one of the promising terahertz (THz) source candidates, owing to their high performance and low cost. Much effort has been made to achieve spintronic THz sources with broadband and high conversion efficiency. However, the development of spintronic THz emitters with good compatibility, low cost, and miniaturized technology still faces many challenges. Therefore, it is urgent to extend commercial and portable spintronic THz emitters to satisfy many practical applications. Herein, we design a new generation of spintronic THz emitters composed of an alternating electromagnet and a miniaturized electronic controller. Not only can this new type of spintronic THz emitter largely simplify the ancillary equipment for spintronic sources, it also has a twice larger THz signal compared to the traditional THz time-domain spectroscopy systems with a mechanical chopper. Experimental results and theoretical calculations for electromagnetic coils show that our design can stably generate THz signals that are independent of the frequency and magnetic field of alternating signals. As the spin thin film is optimized, a magnetic field as low as 75 G satisfies the requirement for high performance THz emission. Hence, not only is the efficiency of the pump power enhanced, but also the driving current in the electromagnet is decreased. We believe that it has a wide range of applications and profound implications in THz technology based on spintronic emitters in the future.
1. Introduction
The research of terahertz (THz) technologies provides fascinating paths for imaging[
Based on inverse spin Hall effect (ISHE)[
In this work, we design a unique structure for encapsulating STEs composed of a W/CoFeB/Pt trilayer heterostructure to enhance the pump power efficiency and downsize the external equipment. Thus, spintronic emitters can be expected to be used for PCAs to become new portable THz sources, which provide more possible optical paths for THz research, such as radar and angular deflection. In our THz-TDS system, the cumbersome mechanical chopper and its controller are replaced by an electromagnet composed of two electromagnetic coils and a function generator circuit module, which are with low cost, compact, compatible, and highly efficient. Furthermore, the generated THz signal is doubled, and the laser energy efficiency is improved simultaneously. Besides, this design can potentially serve as a more efficient THz polarization controller via integrating two orthogonal electromagnetic fields. Using the generator circuit module, not only can the sinusoidal THz polarization be created easily, but also the specific polar angle can be set by switching the alternative current to the direct current (DC). The new electrically driven module can also be expanded to other types of STEs.
Sign up for Chinese Optics Letters TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
2. Results and Discussion
A sketch of the device structure used for THz emission is shown in Fig. 1. In our design, the STEs fixed in an alternating electromagnetic field generate THz pulses upon the spatial photoexcitation of an 800 nm femtosecond laser. We electro-optically sample the generated THz pulses emitted by the charge current [
Figure 1.Schematic of spintronic film THz emission with alternating electromagnetic coils.
Figure 2(a) shows the main circuit diagram of a power supply system to generate an alternating electromagnetic field. As shown in Fig. 2(a) and Fig. S2(e) in
Figure 2.(a) Power supply circuit for the electromagnetic coils to produce the alternating magnetic field. (b) Magnetic field versus current and corresponding theoretical calculation for electromagnetic coils.
In Fig. 3(a), with the wave signal from the function generator reversing, the signal in the coils reverses at the same time when supervised by the oscilloscope. In fact, a small delay () of the voltage signal occurs between the command from the function generator and the generated alternating magnetic field, and it could be ignored. From the oscilloscope, we can find that the waveform in the circuit almost stays consistent with the function generator. Then, the periodic signal can be used for equivalent-time sampling. Based on the equivalent-time sampling technique, a periodic signal is required for implementing THz time-domain waveform measurements[
Figure 3.(a) Square waveforms detected from the function generator and the oscilloscope. (b) Simplified waveforms for laser modulation by a chopper and electromagnetic field modulation by a function generator. (c) THz signal waveforms from the W/CoFeB/Pt spintronic film measured by a THz emission system, where two reverse directions of the direct current (DC) and alternating current (AC) flow in coils with chopper (w/ chopper) and without chopper (w/o chopper), respectively. (d) THz signal waveforms from the W/CoFeB/Pt spintronic emitter with the original start level (orange line) and a π phase difference start level (gray dash line).
Moreover, the STEs integrated with two electromagnetic coils are flexible for adjusting the phase of the generated THz signal. As shown in Fig. 3(c), the THz signal (the gray dash line) phase becomes opposite when an opposite DC is applied on the electromagnet. It meets the expectation that upon reversing the direction of the magnetic field, the generated THz signal experiences a sign reversal. Figure 3(d) shows the generated THz signal when the alternating voltage starts at a different level (1 or ). In Fig. 3(d), the orange line represents the THz signal when the alternating voltage starts at the high level (1). Conversely, the gray line represents the THz signal when the alternating voltage starts at the low level (). We can find that the generated THz signal experiences a sign reversal because of the sign reversal of the generated magnetic field. Therefore, in our system, we can easily switch the starting level by programming the function generator to yield two opposite signs of THz signals. In other words, we can say that the phase difference of the generated THz signals via electric control can be achieved easily and efficiently in this system, which is promising in THz communication.
Lastly, THz signals are surveyed in the W/CoFeB/Pt sample with different frequencies of alternating voltage applied on the electromagnet [Fig. 4(a)]. It is worth mentioning that the peak value of the THz wave is relatively stable below 1 kHz. In addition, we measured the THz field with a 2 mm thick ZnTe crystal in a atmosphere, whose bandwidth extends from 1 to 2.5 THz. Figure S3 of
Figure 4.(a) THz signal waveforms and (b) the peak value of the THz signal under different frequencies from 84 Hz to 6884 Hz. (c) THz signal waveforms and (d) the peak value of the THz signal under different square wave amplitudes from 2 mV to 300 mV.
There is an obvious inflection point around 1884 Hz and a sharp fall after it [see fitting curve in Fig. 4(b)]. Besides, a 67% drop from 984 Hz to 6884 Hz is observed in Fig. 4(b). This illustrates the negative effects of the electromagnet on the THz signal when the frequency applied on the electromagnet exceeds the repetition rate of the laser pulses. The alternating magnetic fields with different intensities are further investigated via changing the amplitude of the square voltage on the electromagnet from 2 mV to 300 mV, which is the voltage on the coils before amplification. It can convert into the current and magnetic field by the Biot–Savart law in
3. Conclusions
In conclusion, we have exhibited a novel miniaturization circuit design for a W/CoFeB/Pt sandwich heterostructure as a potential commercial THz emitter. The superiority of an alternating electromagnet with a miniaturized control circuit has been studied by comparing it with the cumbersome chopper in the THz-TDS system. Through the special design, a 2 times larger THz time-domain signal is obtained on a spin thin film, indicating full utilization of the pump power in comparison to a traditional THz-TDS system. Note that a small magnetic field, 40 G, can allow the spin thin film to generate a THz signal, meaning that a small space and current can meet the requirements for a drive circuit. Simultaneously, we have demonstrated the stability of our STE below 1 kHz square wave signal modulation, while a modulation frequency higher than the repetition rate of the laser has a negative effect on the performance of the emitter. The demonstration is based on the common spin thin film, but the approach of curtailing the STE space can be efficiently applied in both free space and optical-fiber systems. Therefore, our design is a promising route for further development of THz applications.
[1] C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, W. J. Padilla. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics, 8, 605(2014).
[2] S.-C. Chen, Z. Feng, J. Li, W. Tan, L.-H. Du, J. Cai, Y. Ma, K. He, H. Ding, Z.-H. Zhai, Z.-R. Li, C.-W. Qiu, X.-C. Zhang, L.-G. Zhu. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl., 9, 99(2020).
[3] H. Guerboukha, Y. Amarasinghe, R. Shrestha, A. Pizzuto, D. M. Mittleman. High-volume rapid prototyping technique for terahertz metallic metasurfaces. Opt. Express, 29, 13806(2021).
[4] D. M. Mittleman. Twenty years of terahertz imaging [Invited]. Opt. Express, 26, 9417(2018).
[5] W. L. Chan, J. Deibel, D. M. Mittleman. Imaging with terahertz radiation. Rep. Prog. Phys., 70, 1325(2007).
[6] A. P. Gong, Y. T. Qiu, X. W. Chen, Z. Y. Zhao, L. Z. Xia, Y. N. Shao. Biomedical applications of terahertz technology. Appl. Spectrosc. Rev., 55, 418(2020).
[7] M. Wan, J. J. Healy, J. T. Sheridan. Terahertz phase imaging and biomedical applications. Opt. Laser Technol., 122, 105859(2020).
[8] L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, T. H. Tao. Implantable, degradable, therapeutic terahertz metamaterial devices. Small, 16, 2000294(2020).
[9] H. Li, M. Yan, W. Wan, T. Zhou, K. Zhou, Z. Li, J. Cao, Q. Yu, K. Zhang, M. Li, J. Nan, B. He, H. Zeng. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation. Adv. Sci., 6, 1900460(2019).
[10] H. Li, Z. Li, W. Wan, K. Zhou, X. Liao, S. Yang, C. Wang, J. C. Cao, H. Zeng. Toward compact and real-time terahertz dual-comb spectroscopy employing a self-detection scheme. ACS Photonics, 7, 49(2020).
[11] T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi. Terahertz wireless communications based on photonics technologies. Opt. Express, 21, 23736(2013).
[12] J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, D. M. Mittleman. Security and eavesdropping in terahertz wireless links. Nature, 563, 89(2018).
[13] D. Molter, D. Huebsch, T. Sprenger, K. Hens, K. Nalpantidis, F. Platte, G. Torosyan, R. Beigang, J. Jonuscheit, G. von Freymann, F. Ellrich. Mail inspection based on terahertz time-domain spectroscopy. Appl. Sci., 11, 950(2021).
[14] Y. Takida, K. Nawata, H. Minamide. Security screening system based on terahertz-wave spectroscopic gas detection. Opt. Express, 29, 2529(2021).
[15] M. Tal, S. Keren-Zur, T. Ellenbogen. Nonlinear plasmonic metasurface terahertz emitters for compact terahertz spectroscopy systems. ACS Photonics, 7, 3286(2020).
[16] N. M. Burford, M. O. El-Shenawee. Review of terahertz photoconductive antenna technology. Opt. Eng., 56, 010901(2017).
[17] B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, T. E. Darcie. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett., 12, 6255(2012).
[18] K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, K. H. Park. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices. Sci. Rep., 5, 13817(2015).
[19] A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, R. Gordon. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Lett., 15, 8306(2015).
[20] K. Moon, J. Choi, J.-H. Shin, S.-P. Han, H. Ko, N. Kim, J.-W. Park, Y.-J. Yoon, K.-Y. Kang, H.-C. Ryu, K. H. Park. Generation and detection of terahertz waves using low-temperature-grown GaAs with an annealing process. ETRI J., 36, 159(2014).
[21] D. S. Kim, D. S. Citrin. Coulomb and radiation screening in photoconductive terahertz sources. Appl. Phys. Lett., 88, 161117(2006).
[22] A. Singh, S. S. Prabhu. Microlensless interdigitated photoconductive terahertz emitters. Opt. Express, 23, 1529(2015).
[23] N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Trans. Terahertz Sci. Technol., 5, 223(2015).
[24] S. O. Valenzuela, M. Tinkham. Direct electronic measurement of the spin Hall effect. Nature, 442, 176(2006).
[25] Y. Xu, F. Zhang, X.-Q. Zhang, Y.-C. Du, H.-H. Zhao, T.-X. Nie, X.-J. Wu, W.-S. Zhao. Research advances in spintronic terahertz sources. Acta Phys. Sin., 69, 200703(2020).
[26] T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, A. V. Kimel. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nat. Nanotechnol., 11, 455(2016).
[27] R. Schneider, M. Fix, R. Heming, S. Michaelis de Vasconcellos, M. Albrecht, R. Bratschitsch. Magnetic-field-dependent THz emission of spintronic TbFe/Pt layers. ACS Photonics, 5, 3936(2018).
[28] T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Munzenberg, M. Klaui, T. Kampfrath. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics, 10, 483(2016).
[29] U. Nandi, M. S. Abdelaziz, S. Jaiswal, G. Jakob, O. Gueckstock, S. M. Rouzegar, T. S. Seifert, M. Klaeui, T. Kampfrath, S. Preu. Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator. Appl. Phys. Lett., 115, 022405(2019).
[30] D. Kong, X. Wu, B. Wang, T. Nie, M. Xiao, C. Pandey, Y. Gao, L. Wen, W. Zhao, C. Ruan, J. Miao, Y. Li, L. Wang. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv. Opt. Mater., 7, 1900487(2019).
[31] R. Sun, S. Yang, X. Yang, E. Vetter, D. Sun, N. Li, L. Su, Y. Li, Y. Li, Z.-Z. Gong, Z.-K. Xie, K.-Y. Hou, Q. Gul, W. He, X.-Q. Zhang, Z.-H. Cheng. Large tunable spin-to-charge conversion induced by hybrid Rashba and Dirac surface states in topological insulator heterostructures. Nano Lett., 19, 4420(2019).
[32] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, Q. J. Wang. Electrically pumped topological laser with valley edge modes. Nature, 578, 246(2020).
[33] X. Wang, L. Cheng, D. Zhu, Y. Wu, M. Chen, Y. Wang, D. Zhao, C. B. Boothroyd, Y. M. Lam, J.-X. Zhu, M. Battiato, J. C. W. Song, H. Yang, E. E. M. Chia. Ultrafast spin-to-charge conversion at the surface of topological insulator thin films. Adv. Mater., 30, 1802356(2018).
[34] P. Seifert, K. Vaklinova, S. Ganichev, K. Kern, M. Burghard, A. W. Holleitner. Spin Hall photoconductance in a three-dimensional topological insulator at room temperature. Nat. Commun., 9, 331(2018).
[35] H. Zhao, X. Chen, C. Ouyang, H. Wang, D. Kong, P. Yang, B. Zhang, C. Wang, G. Wei, T. Nie, W. Zhao, J. Miao, Y. Li, L. Wang, X. Wu. Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3. Adv. Photonics, 2, 066003(2020).
[36] T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Noetzold, S. Maehrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Bluegel, M. Wolf, I. Radu, P. M. Oppeneer, M. Muenzenberg. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 8, 256(2013).
[37] W. Jia, M. Liu, Y. Lu, X. Feng, Q. Wang, X. Zhang, Y. Ni, F. Hu, M. Gong, X. Xu, Y. Huang, W. Zhang, Y. Yang, J. Han. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 10, 11(2021).
[38] M. Chen, K. Lee, J. Li, L. Cheng, Q. Wang, K. Cai, E. E. M. Chia, H. Chang, H. Yang. Anisotropic picosecond spin-photocurrent from Weyl semimetal WTe2. ACS Nano, 14, 3539(2020).
[39] X. Chen, X. Wu, S. Shan, F. Guo, D. Kong, C. Wang, T. Nie, C. Pandey, L. Wen, W. Zhao, C. Ruan, J. Miao, Y. Li, L. Wang. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters. Appl. Phys. Lett., 115, 221104(2019).
[40] O. Gueckstock, L. Nádvorník, T. S. Seifert, M. Borchert, G. Jakob, G. Schmidt, G. Woltersdorf, M. Kläui, M. Wolf, T. Kampfrath. Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz. Optica, 8, 1013(2021).
[41] S. O. Valenzuela, M. Tinkham. Direct electronic measurement of the spin Hall effect. Nature, 442, 176(2006).
[42] O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, A. Hoffmann. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett., 104, 046601(2010).
[43] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photonics Rev., 5, 124(2011).
[44] K. Ahi, S. Shahbazmohamadi, N. Asadizanjani. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng., 104, 274(2018).
[45] H. Guerboukha, K. Nallappan, M. Skorobogatiy. Toward real-time terahertz imaging. Adv. Opt. Photonics, 10, 843(2018).
[46] Q. Zhang, Z. Luo, H. Li, Y. Yang, X. Zhang, Y. Wu. Terahertz emission from anomalous Hall effect in a single-layer ferromagnet. Phys. Rev. Appl., 12, 054027(2019).
Get Citation
Copy Citation Text
Yunqing Jiang, Xiaoqiang Zhang, Yongshan Liu, Pierre Vallobra, Sylvain Eimer, Fan Zhang, Yinchang Du, Fengguang Liu, Yong Xu, Weisheng Zhao, "Spintronic terahertz emitter with integrated electromagnetic control," Chin. Opt. Lett. 20, 043201 (2022)
Category: Ultrafast Optics and Attosecond/High-field Physics
Received: Dec. 10, 2021
Accepted: Feb. 16, 2022
Posted: Feb. 17, 2022
Published Online: Mar. 10, 2022
The Author Email: Xiaoqiang Zhang (xqzhang@buaa.edu.cn), Yong Xu (yongxu@buaa.edu.cn), Weisheng Zhao (weisheng.zhao@buaa.edu.cn)