Chinese Journal of Lasers, Volume. 48, Issue 20, 2011001(2021)

Quartz-Enhanced Photoacoustic Spectroscopy System Based on Lens-Reflector Combination

Jinpeng Liu, Liuya Sun, Mingsheng Niu*, Lili Ma, and Jinghu Zhang
Author Affiliations
  • Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Laser Research Institute, School of Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
  • show less
    References(27)

    [1] Kosterev A A, Bakhirkin Y A, Curl R F et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 27, 1902-1904(2002).

    [2] Martin P A. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring[J]. Chemical Society Reviews, 31, 201-210(2002).

    [3] Chen K, Yuan S, Gong Z F et al. High sensitive detection for SF6 decomposition component of H2S based on laser photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 45, 0911012(2018).

    [4] Liu X, Zhang T, Zhang G et al. Carbon monoxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 47, 0111002(2020).

    [5] Sun S W, Yi H M, Wang G S et al. Impact of water on quartz enhanced photo-acoustic absorption spectroscopy methane senor performance[J]. Chinese Journal of Lasers, 39, 0715001(2012).

    [6] Dong L, Ma W G, Zhang L et al. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy[J]. Acta Optica Sinica, 34, 0130002(2014).

    [7] Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 44, 0511001(2017).

    [8] Yu R, Jiang Y S. Photoacoustic spectroscopy system with amplitude spectrum and phase spectrum measurement functions[J]. Acta Optica Sinica, 34, 0230001(2014).

    [9] Zhang Q D, Chang J, Wang Q et al. Acousto-optic Q-switched fiber laser-based intra-cavity photoacoustic spectroscopy for trace gas detection[J]. Sensors, 18, E42(2017).

    [10] Wojcik M D, Phillips M C, Cannon B D et al. Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers[J]. Applied Physics B, 85, 307-313(2006).

    [11] Lewicki R, Wysocki G, Kosterev A A et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm[J]. Optics Express, 15, 7357-7366(2007).

    [12] Liu K, Guo X Y, Yi H M et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 34, 1594-1596(2009).

    [13] Merkli P. Acoustic resonance frequencies for a T-tube[J]. Zeitschrift Fur Angewandte Mathematik Und Physik ZAMP, 29, 486-498(1978).

    [15] Yi H, Chen W, Guo X et al. An acoustic model for microresonator in on-beam quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics B, 108, 361-367(2012).

    [16] Ma Y F, Yu X, Yu G et al. Multi-quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 107, 021106(2015).

    [17] Patimisco P, Sampaolo A, Dong L et al. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing[J]. Sensors and Actuators B, 227, 539-546(2016).

    [18] Schilt S, Kosterev A A, Tittel F K. Performance evaluation of a near infrared QEPAS based ethylene sensor[J]. Applied Physics B, 95, 813-824(2009).

    [19] Wu H, Dong L, Zheng H et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring[J]. Nature Communications, 8, 15331(2017).

    [20] Zheng H D, Dong L, Liu X L et al. Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection[J]. Laser Physics, 25, 125601(2015).

    [21] He Y, Ma Y, Tong Y et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell[J]. Optics Letters, 44, 1904-1907(2019).

    [22] Hu L E, Zheng C T, Zheng J et al. Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 44, 2562-2565(2019).

    [23] Liu Y N, Chang J, Lian J et al. Quartz-enhanced photoacoustic spectroscopy with right-angle prism[J]. Sensors, 16, 214(2016).

    [24] Schilt S, Thévenaz L. Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results[J]. Infrared Physics & Technology, 48, 154-162(2006).

    [25] Ma Y F, He Y, Tong Y et al. Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork[J]. Optics Express, 25, 29356-29364(2017).

    [26] Werle P, Mücke R, Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)[J]. Applied Physics B, 57, 131-139(1993).

    [27] Yi H M, Liu K, Chen W D et al. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 36, 481-483(2011).

    Tools

    Get Citation

    Copy Citation Text

    Jinpeng Liu, Liuya Sun, Mingsheng Niu, Lili Ma, Jinghu Zhang. Quartz-Enhanced Photoacoustic Spectroscopy System Based on Lens-Reflector Combination[J]. Chinese Journal of Lasers, 2021, 48(20): 2011001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: spectroscopy

    Received: Dec. 17, 2020

    Accepted: Mar. 16, 2021

    Published Online: Sep. 23, 2021

    The Author Email: Niu Mingsheng (qsdmsniu@qfnu.edu.cn)

    DOI:10.3788/CJL202148.2011001

    Topics