Laser Journal, Volume. 46, Issue 1, 119(2025)
Image restoration algorithm with integrated simplified dual adaptive attention mechanism
[4] [4] Sun J, Cao W, Xu Z, et al. Learning a convolutional neural network for nonuniform motion blur removal[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 769-777.
[5] [5] Schuler C J, Hirsch M, Harmeling S, et al. Learning to deblur[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(7): 1439-1451.
[6] [6] Chakrabarti A. A neural approach to blind motion deblurring[C]//European Conference on Computer Vision. 2016: 221-235.
[7] [7] Gong D, Yang J, Liu L, et al. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2319-2328.
[8] [8] Nah S, Hyun Kim T, Mu Lee K. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 3883-3891.
[9] [9] Kupyn O, Budzan V, Mykhailych M, et al. Deblurgan: Blind motion deblurring using conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8183-8192.
[10] [10] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1125-1134.
[11] [11] Chen H, Wang Y, Guo T, et al. Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 12299-12310.
[12] [12] Zamir S W, Arora A, Khan S, et al. Restormer: Efficient Transformer for High-Resolution Image Restoration[C]//2021. DOI: 10.48550/arXiv. 2111.09881.
[13] [13] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323.
[14] [14] Hendrycks D, Gimpel K. Gaussian error linear units (gelus)[J]. arXiv preprint arXiv: 1606.08415, 2016.
[15] [15] Liu S, Wang Y, Sun J, et al. An efficient Spatial-Temporal model based on gated linear units for trajectory prediction[J]. Neurocomputing, 2022, 492: 593-600.
[17] [17] Nguyen V A, Shafieezadeh - Abadeh S, Kuhn D, et al. Bridging Bayesian and minimax mean square error estimation via Wasserstein distributionally robust optimization[J]. Mathematics of Operations Research, 2023, 48(1): 1-37.
[18] [18] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
[19] [19] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. Ieee, 2003, 2: 1398-1402.
[20] [20] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on computational imaging, 2016, 3(1): 47-57.
[21] [21] Nah S, Hyun Kim T, Mu Lee K. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 3883-3891.
Get Citation
Copy Citation Text
WANG Lei, HU Junhong, REN Yang. Image restoration algorithm with integrated simplified dual adaptive attention mechanism[J]. Laser Journal, 2025, 46(1): 119
Category:
Received: Aug. 25, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: HU Junhong (1527614901@qq.com)