Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410002(2021)

Dual Residual Denoising Network Based on Hybrid Attention

Haitao Yin* and Hao Deng
Author Affiliations
  • College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • show less
    Figures & Tables(17)
    Network structure of DnCNN
    Structure of ResNet block and SE-ResNet block. (a) Traditional ResNet block; (b) SE-ResNet block
    Structure of non-local block
    Structure of traditional residual network
    Structure of dual residual network
    Structure of HDDNet network model
    Structure of D-block module
    Structure of ResNet block. (a) Traditional ResNet block; (b) simplified ResNet block
    Structure of DNL-block module
    Test images
    Denoised images of different algorithms on Starfish (σ=30). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
    Denoised images of different algorithms on Butterfly (σ=50). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
    Denoised images for pepper & salt noise (noise density is 10%). (a)--(g) Pepper & salt noise images; (h)--(n) denoised images
    • Table 1. Parameters of DNL-block and D-block modules

      View table

      Table 1. Parameters of DNL-block and D-block modules

      ModuleConv-A kernel sizeConv-B kernel sizeDilation
      DNL-block1531
      D-block1751
      D-blcok2752
      D-block31172
      D-block41151
      DNL-block21173
    • Table 2. PSNR values of different methods

      View table

      Table 2. PSNR values of different methods

      Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=15DnCNN32.5934.9933.2432.1333.2531.6731.8832.82
      FDnCNN32.5935.1333.1732.0733.1431.6731.8532.80
      FFDNet32.3735.0533.0231.9532.9231.5531.7932.66
      IRCNN32.5334.8833.2131.9632.9831.6631.8832.73
      DuRN32.2934.7333.0232.0132.9531.6231.8032.63
      HDDNet32.5934.9633.2132.1533.2231.6931.8632.81
      σ=30DnCNN29.2832.2929.8528.2829.4228.1928.5929.42
      FDnCNN29.4332.5929.9228.3729.4328.2128.7029.52
      FFDNet29.2832.5729.8728.3429.3928.1328.6529.46
      IRCNN29.2832.1929.7928.1429.2228.1428.6229.34
      DuRN28.9932.2629.5328.3529.2428.0828.5229.28
      HDDNet29.4332.4329.9828.5629.5228.2328.6529.53
      σ=50DnCNN27.2629.9627.3525.626.8325.8326.4227.04
      FDnCNN27.3530.2527.4125.6626.8425.8126.5927.13
      FFDNet27.3430.3627.4125.6826.9225.7926.5727.14
      IRCNN27.1629.9027.3325.4826.6625.7826.4826.97
      DuRN26.9130.1427.1325.7126.7325.8726.3526.98
      HDDNet27.3330.3527.3725.8926.9725.9026.4727.18
    • Table 3. SSIM values of different methods

      View table

      Table 3. SSIM values of different methods

      Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=15DnCNN0.91310.88550.91210.91460.95010.90770.90490.9126
      FDnCNN0.91320.88700.91190.91350.95030.90800.90470.9127
      FFDNet0.91180.88770.91120.91260.94910.90740.90450.9120
      IRCNN0.91130.88310.91070.91230.94770.90640.90390.9108
      DuRN0.90890.88340.91530.92050.94870.90710.90780.9131
      HDDNet0.91370.88580.91170.91470.95050.90810.90500.9128
      Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=30DnCNN0.85000.85180.86090.84530.90250.85110.84250.8577
      FDnCNN0.85930.85420.86480.84630.90710.85370.84630.8617
      FFDNet0.85990.85420.86520.84570.90730.85370.84670.8618
      IRCNN0.85300.84740.85610.84120.89900.84750.84270.8553
      DuRN0.84820.85070.86340.85410.90200.84940.84740.8593
      HDDNet0.86110.85380.86610.85020.90820.85450.84550.8628
      σ=50DnCNN0.80770.81850.80900.77220.85130.79780.79520.8074
      FDnCNN0.81070.82450.81370.77470.85530.79860.79950.8110
      FFDNet0.81380.82730.81640.77500.85850.79970.80040.8130
      IRCNN0.80280.81590.80440.76750.84540.79530.79530.8038
      DuRN0.79540.82110.80820.78000.84510.79540.79210.8053
      HDDNet0.81420.82930.81440.78120.85750.80120.79710.8136
    • Table 4. RMSE values of different methods

      View table

      Table 4. RMSE values of different methods

      Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=15DnCNN5.994.545.556.315.556.666.495.87
      FDnCNN5.994.475.606.365.626.656.525.89
      FFDNet6.144.515.706.445.766.746.565.98
      IRCNN6.034.605.576.445.726.666.495.93
      DuRN6.204.685.706.405.746.696.555.99
      HDDNet5.984.565.576.305.576.646.515.87
      σ=30DnCNN8.766.198.209.828.629.939.488.72
      FDnCNN8.615.988.149.738.619.919.368.62
      FFDNet8.766.008.199.768.6510.009.428.68
      IRCNN8.766.278.269.998.829.999.468.74
      DuRN9.066.228.519.758.8010.059.578.85
      HDDNet8.616.098.149.528.529.899.418.60
      σ=50DnCNN11.058.1010.9413.3211.6213.0412.1811.46
      FDnCNN10.947.8310.8713.2911.6013.0711.9511.36
      FFDNet11.087.7410.8713.2611.5013.0911.9711.36
      IRCNN11.188.1510.9613.5711.8513.1112.1011.56
      DuRN11.517.9411.2213.2111.7512.9812.2811.55
      HDDNet10.977.7410.9112.9511.4412.9312.1111.29
    Tools

    Get Citation

    Copy Citation Text

    Haitao Yin, Hao Deng. Dual Residual Denoising Network Based on Hybrid Attention[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 12, 2020

    Accepted: Nov. 12, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Haitao Yin (haitaoyin@njupt.edu.cn)

    DOI:10.3788/LOP202158.1410002

    Topics