Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410002(2021)
Dual Residual Denoising Network Based on Hybrid Attention
Fig. 2. Structure of ResNet block and SE-ResNet block. (a) Traditional ResNet block; (b) SE-ResNet block
Fig. 8. Structure of ResNet block. (a) Traditional ResNet block; (b) simplified ResNet block
Fig. 11. Denoised images of different algorithms on Starfish (σ=30). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
Fig. 12. Denoised images of different algorithms on Butterfly (σ=50). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
Fig. 13. Denoised images for pepper & salt noise (noise density is 10%). (a)--(g) Pepper & salt noise images; (h)--(n) denoised images
|
|
|
|
Get Citation
Copy Citation Text
Haitao Yin, Hao Deng. Dual Residual Denoising Network Based on Hybrid Attention[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410002
Category: Image Processing
Received: Oct. 12, 2020
Accepted: Nov. 12, 2020
Published Online: Jun. 30, 2021
The Author Email: Haitao Yin (haitaoyin@njupt.edu.cn)