Chinese Optics Letters, Volume. 20, Issue 8, 081203(2022)
Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication
[1] L. J. Chu. Physical limitations of omni-directional antennas. J. Appl. Phys., 19, 1163(1948).
[2] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 8, 819(2012).
[3] C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, G. Raithel. Broadband Rydberg atom-based electric-field probe: from self-calibrated measurements to sub-wavelength imaging. IEEE Trans. Antenna Propag., 62, 6169(2014).
[4] P. Böhi, M. F. Riedel, T. W. Hänsch, P. Treutlein. Imaging of microwave fields using ultracold atoms. Appl. Phys. Lett., 97, 051101(2010).
[5] P. Böhi, P. Treutlein. Simple microwave field imaging technique using hot atomic vapor cells. Appl. Phys. Lett., 101, 181107(2012).
[6] A. K. Mohapatra, T. R. Jackson, C. S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 98, 113003(2007).
[7] Y. Y. Jau, T. Carter. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 13, 054034(2020).
[8] D. A. Anderson, R. E. Sapiro, G. Raithel. An atomic receiver for AM and FM radio communication. IEEE Trans. Antenna Propag., 69, 2455(2021).
[9] D. A. Anderson, E. Paradis, G. Raithel, R. E. Sapiro, C. L. Holloway. High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element. 11th Global Symposium on Millimeter Waves (GSMM), 1(2018).
[10] M. Y. Jing, Y. Hu, J. Ma, H. Zhang, L. J. Zhang, L. T. Xiao, S. T. Jia. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 16, 911(2020).
[11] C. L. Holloway, M. T. Simons, M. D. Kautz, A. H. Haddab, J. A. Gordon, T. P. Crowley. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides. Appl. Phys. Lett., 113, 094101(2018).
[12] M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, G. Raithel. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett., 108, 174101(2016).
[13] J. A. Sedlacek, A. Schwettmann, H. Kübler, J. P. Shaffer. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett., 111, 063001(2013).
[14] M. T. Simons, A. H. Haddab, J. A. Gordon, C. L. Holloway. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave. Appl. Phys. Lett., 114, 114101(2019).
[15] D. A. Anderson, R. E. Sapiro, L. F. Gonçalves, R. Cardman, G. Raithel. Atom radio-frequency interferometry(2020).
[16] A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, C. L. Holloway. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl. Phys. Lett., 118, 114001(2021).
[17] M. T. Simons, J. A. Gordon, C. L. Holloway. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor. Appl. Opt., 57, 6456(2018).
[18] R. Cardman, L. F. Gonçalves, R. E. Sapiro, G. Raithel, D. A. Anderson. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument. Adv. Opt. Tech., 9, 305(2020).
[19] C. L. Holloway, M. T. Simons, A. H. Haddab, J. A. Gordon, S. D. Voran. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception. IEEE Antennas Propag. Mag., 63, 63(2021).
[20] D. H. Meyer, Z. A. Castillo, K. C. Cox, P. D. Kunz. Assessment of Rydberg atoms for wideband electric field sensing. J. Phys. B: At. Mol. Opt. Phys., 53, 034001(2020).
[21] D. H. Meyer, P. D. Kunz, K. C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Appl., 15, 014053(2021).
[22] D. H. Meyer, K. C. Cox, F. K. Fatemi, P. D. Kunz. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl. Phys. Lett., 112, 211108(2018).
[23] K. C. Cox, D. H. Meyer, F. K. Fatemi, P. D. Kunz. Quantum-limited atomic receiver in the electrically small regime. Phys. Rev. Lett., 121, 110502(2018).
[24] J. S. Otto, M. K. Hunter, N. Kjærgaard, A. B. Deb. Data capacity scaling of a distributed Rydberg atomic receiver array. J. Appl. Phys., 129, 154503(2021).
[25] H. Y. Zou, Z. F. Song, H. H. Mu, Z. G. Feng, J. F. Qu, Q. L. Wang. Atomic receiver by utilizing multiple radio-frequency coupling at Rydberg states of rubidium. Appl. Sci., 10, 1346(2020).
[26] C. L. Holloway, M. T. Simons, J. A. Gordon, D. Novotny. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver. IEEE Antennas Wirel. Propag. Lett., 18, 1853(2019).
[27] M. T. Simons, A. B. Artusio-Glimpse, C. L. Holloway, E. Imhof, S. R. Jefferts, R. Wyllie, B. C. Sawyer, T. G. Walker. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning. Phys. Rev. A, 104, 032824(2021).
[28] Y. Sun, Y. Yao, Y. Q. Hao, H. F. Yu, Y. Y. Jiang, L. S. Ma. Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy. Chin. Opt. Lett., 18, 070201(2020).
[29] X. T. Chen, Y. Y. Jiang, B. Li, H. F. Yu, H. F. Jiang, T. Wang, Y. Yao, L. S. Ma. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).
[30] C. E. Shannon. Communication in the presence of noise. Proc. IRE, 37, 10(1949).
Get Citation
Copy Citation Text
Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An, Yunqi Fu, "Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication," Chin. Opt. Lett. 20, 081203 (2022)
Category: Instrumentation, Measurement, and Optical Sensing
Received: Jan. 19, 2022
Accepted: May. 7, 2022
Published Online: Jun. 1, 2022
The Author Email: Qiang An (anqiang18@nudt.edu.cn), Yunqi Fu (yunqifu@nudt.edu.cn)