Acta Optica Sinica, Volume. 44, Issue 21, 2114003(2024)
Keyhole TIG Defect Detection and Classification Based on ResNet
Fig. 6. Six categories of images. (a) Good weld seam; (b) burn through; (c) contamination; (d) lack of fusion; (e) misalignment; (f) lack of penetration
Fig. 7. Data augmentation. (a) Origin; (b) rotation; (c) random horizontal; (d) random crop; (e) random brightness; (f) contrast adjustment
Fig. 10. 2D spatial distribution of deep features. (a) Combination of Softmax loss and center loss; (b) Softmax loss only
Fig. 11. Feature maps of ResNet features from different layers. (a) Input image; (b) convex function optimization layer; (c) layer 1; (d) final layer
Fig. 13. Example of guided grad-CAM for welding image. (a) Input; (b) CAM; (c) guided grad-CAM
|
|
|
Get Citation
Copy Citation Text
Xuan Zhang, Chenchen Ma, Mingdi Wang. Keyhole TIG Defect Detection and Classification Based on ResNet[J]. Acta Optica Sinica, 2024, 44(21): 2114003
Category: Lasers and Laser Optics
Received: May. 22, 2024
Accepted: Jul. 3, 2024
Published Online: Nov. 19, 2024
The Author Email: Wang Mingdi (wangmingdidi@126.com)
CSTR:32393.14.AOS241057