Journal of Quantum Optics, Volume. 30, Issue 2, 20301(2024)

Unidimensional Continuous-variable Measurement-device-independent Quantum Key Distribution Using Squeezed States

LIU Wen-yuan*, BAI Jian-dong, JIE Qi, JIN Jing-jing, and LIU Ze-hui
Author Affiliations
  • Department of Physics, School of Semiconductor and Physics, North University of China, Taiyuan 030051, China
  • show less
    References(67)

    [1] [1] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1):145−195. DOI: 10.1103/revmodphys.74.145.

    [2] [2] BRAUNSTEIN S L, LOOCK P V. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2):513−577. DOI: 10.1103/RevModPhys.77.513.

    [3] [3] WEEDBROOK C, PIRANDOLA S, GARCA-PATRN R, et al. Gaussian quantum information[J]. Reviews of Modern Physics, 2012, 84(2):621−669. DOI: 10.1103/revmodphys.84.621.

    [4] [4] LO H K, CURTY M, TAMAKI K. Secure quantum key distribution[J]. Nature Photonics, 2014, 8(8):595−604. DOI: 10.1038/nphoton.2014.149.

    [5] [5] XU F, MA X, ZHANG Q, et al. Secure quantum key distribution with realistic devices[J]. Reviews of Modern Physics, 2020, 92(2):025002. DOI: 10.1103/revmodphys.92.025002.

    [6] [6] PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in quantum cryptography[J]. Advances in Optics and Photonics, 2020, 12(4):1012−1236. DOI: 10.1364/AOP.361502.

    [7] [7] SUN S, XU F. Security of quantum key distribution with source and detection imperfections[J]. New Journal of Physics, 2021, 23(2):023011. DOI: 10.1088/1367-2630/abdf9b.

    [8] [8] LO H K, CURTY M, QI B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13):130503. DOI: 10.1103/PhysRevLett.108.130503.

    [9] [9] WANG S, HE D Y, YIN Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2):021046. DOI: 10.1103/PhysRevX.9.021046.

    [10] [10] YIN J, LI Y H, LIAO S K, et al. Entanglement-based secure quantum cryptography over 1 120 kilometres[J]. Nature, 2020, 582(7813):501−505. DOI: 10.1038/s41586-020-2401-y.

    [11] [11] LIU Y, ZHANG W J, JIANG C, et al. Experimental twin-field quantum key distribution over 1 000 km fiber distance[J]. Physical Review Letters, 2023, 130(21):210801. DOI: 10.1103/PhysRevLett.130.210801.

    [12] [12] RALPH T C. Continuous variable quantum cryptography[J]. Physical Review A, 1999, 61(1):010303(R). DOI: 10.1103/Phys-RevA.61.010303.

    [13] [13] GROSSHANS F, GRANGIER P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 2002, 88(5):057902. DOI: 10.1103/PhysRevLett.88.057902.

    [14] [14] GROSSHANS F, VAN A G, WENGER J, et al. Quantum key distribution using Gaussian-modulated coherent states[J]. Nature, 2003, 421(6920):238−241. DOI: 10.1038/nature01289.

    [15] [15] LODEWYCK J, BLOCH M, GARCA-PATRN R, et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system[J]. Physical Review A, 2007, 76(4):042305. DOI: 10.1103/PhysRevA.76.042305.

    [16] [16] FOSSIER S, DIAMANTI E, DEBUISSCHERT T, et al. Field test of a continuous-variable quantum key distribution prototype[J]. New Journal of Physics, 2009, 11(4):045023. DOI: 10.1088/1367-2630/11/4/045023.

    [17] [17] JOUGUET P, KUNZ-JACQUES S, DEBUISSCHERT T, et al. Field test of classical symmetric encryption with continuous variables quantum key distribution[J]. Optics Express, 2012, 20(13):14030−14041. DOI: 10.1364/oe.20.014030.

    [18] [18] JOUGUET P, KUNZ-JACQUES S, LEVERRIER A, et al. Experimental demonstration of long-distance continuous-variable quantum key distribution[J]. Nature Photonics, 2013, 7(5):378−381. DOI: 10.1038/nphoton.2013.63.

    [19] [19] HUANG D, HUANG P, LI H S, et al. Field demonstration of a continuous-variable quantum key distribution network[J]. Optics Letters, 2016, 41(15):3511−3514. DOI: 10.1364/OL.41.003511.

    [20] [20] ZHANG Y, CHEN Z, PIRANDOLA S, et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber[J]. Physical Review Letters, 2020, 125(1):010502. DOI: 10.1103/PhysRevLett.125.010502.

    [21] [21] LI Y M, WANG X Y, BAI Z L, et al. Continuous variable quantum key distribution[J]. Chinese Physics B, 2017, 26(4):040303. DOI: 10.1038/srep14607.

    [22] [22] WANG T, ZUO Z, LI L, et al. Continuous-variable quantum key distribution without synchronized clocks[J]. Physical Review Applied, 2022, 18(1):014064. DOI: 10.1103/PhysRevApplied.18.014064.

    [23] [23] LAUDENBACH F, PACHER C, FUNG C F, et al. Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations[J]. Advanced Quantum Technologies, 2018, 1(1):1870011. DOI: 10.1002/qute.201870011.

    [24] [24] CHEN Z, WANG X, YU S, et al. Continuous-mode quantum key distribution with digital signal processing[J]. npj Quantum Information, 2023, 9(1):28. DOI: 10.1038/s41534-023-00695-8.

    [25] [25] HUANG Y D, SHEN T, WANG X Y, et al. Realizing a downstream-access network using continuous-variable quantum key distribution[J]. Physical Review A, 2021, 16(6):064051. DOI: 10.1103/PhysRevApplied.16.064051.

    [26] [26] WANG X, CHEN Z, LI Z, et al. Experimental upstream transmission of continuous variable quantum key distribution access network[J]. Optics Letters, 2023, 48(12):3327−3330. DOI: 10.1364/OL.487582.

    [27] [27] FURRER F. Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle[J]. Physical Review A, 2014, 90(4):042325. DOI: 10.1103/PhysRevA.90.042325.

    [28] [28] GROSSHANS F, CERF N J. Continuous-variable quantum cryptography is secure against non-Gaussian attacks[J]. Physical Review Letters, 2004, 92(4):047905. DOI: 10.1103/PhysRevLett.92.047905.

    [29] [29] NAVASCUES M, GROSSHANS F, ACIN A. Optimality of Gaussian attacks in continuous-variable quantum cryptography[J]. Physical Review Letters, 2006, 97(19):190502. DOI: 10.1103/PhysRevLett.97.190502.

    [30] [30] GARCA-PATRN R, CERF N J. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution[J]. Physical Review Letters, 2006, 97(19):190503. DOI: 10.1103/PhysRevLett.97.190503.

    [31] [31] RENNER R, CIRAC J I. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography[J]. Physical Review Letters, 2009, 102(11):110504. DOI: 10.1103/PhysRevLett.102.110504.

    [32] [32] CHRISTANDL M, KONIG R, RENNER R. Postselection technique for quantum channels with applications to quantum cryptography[J]. Physical Review Letters, 2009, 102(2):020504. DOI: 10.1103/PhysRevLett.102.020504.

    [33] [33] LEVERRIER A, GARCA-PATRN R, RENNER R, et al. Security of continuous-variable quantum key distribution against general attacks[J]. Physical Review Letters, 2013, 110(3):030502. DOI: 10.1103/PhysRevLett.110.030502.

    [34] [34] LEVERRIER A, GROSSHANS F, GRANGIER P. Finite-size analysis of a continuous-variable quantum key distribution[J]. Physical Review A, 2010, 81(6):062343. DOI: 10.1103/PhysRevA.81.062343.

    [35] [35] LEVERRIER A. Composable security proof for continuous-variable quantum key distribution with coherent states[J]. Physical Review Letters, 2015, 114(7):070501. DOI: 10.1103/PhysRevLett.114.070501.

    [36] [36] MAKAROV V, HJELME D R. Faked states attack on quantum cryptosystems[J]. Journal of Modern Optics, 2005, 52(5):691−705. DOI: 10.1080/09500340410001730986.

    [37] [37] JAIN N, WITTMANN C, LYDERSEN L, et al. Device calibration impacts security of quantum key distribution[J]. Physical Review Letters, 2011, 107(11):110501. DOI: 10.1103/PhysRevLett.107.110501.

    [38] [38] LIU W, WANG X, WANG N, et al. Imperfect state preparation in continuous-variable quantum key distribution[J]. Physical Review A, 2017, 96(4):042312. DOI: 10.1103/PhysRevA.96.042312.

    [39] [39] ALAGHBARI K A, RUMYANTSEV K, ELTAIF T, et al. Adaptive modulation for continuous-variable quantum key distribution with real local oscillators under phase attack[J]. IEEE Photonics Journal, 2021, 13(5):1−7. DOI: 10.1109/JPHOT.2021.3109060.

    [40] [40] SHAO Y, LI Y, WANG H, et al. Phase-reference-intensity attack on continuous-variable quantum key distribution with a local local oscillator[J]. Physical Review A, 2022, 105(3):032601. DOI: 10.1103/PhysRevA.105.032601.

    [41] [41] LIU W, CAO Y, WANG X, et al. Continuous-variable quantum key distribution under strong channel polarization disturbance[J]. Physical Review A, 2020, 102(3):032625. DOI: 10.1103/PhysRevA.102.032625.

    [42] [42] KURTSIEFER C, ZARDA P, MAYER S, et al. The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks[J]. Journal of Modern Optics, 2001, 48(13):2039−2047. DOI: 10.1080/09500340108240905.

    [43] [43] LAMAS-LINARES A, KURTSIEFER C. Breaking a quantum key distribution system through a timing side channel[J]. Optics Express, 2007, 15(15):9388−9393. DOI: 10.1364/OE.15.009388.

    [44] [44] NAUERTH S, FRST M, SCHMITT-MANDERBACH T, et al. Information leakage via side channels in freespace BB84 quantum cryptography[J]. New Journal of Physics, 2009, 11(6):065001. DOI: 10.1088/1367-2630/11/6/065001.

    [45] [45] YUAN Z L, DYNES J F, SHIELDS A J. Avoiding the blinding attack in QKD[J]. Nature Photonics, 2010, 4(12):800−801. DOI: 10.1038/nphoton.2010.269.

    [46] [46] ZHAO Y, FUNG C F, QI B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4):042333. DOI: 10.1103/PhysRevA.78.042333.

    [47] [47] HUANG J Z, WEEDBROOK C, YIN Z Q, et al. Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack[J]. Physical Review A, 2013, 87(6):062329.10.1103/PhysRevA.87.062329.

    [48] [48] MA X C, SUN S H, JIANG M S, et al. Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol[J]. Physical Review A, 2013, 87(5):052309. DOI: 10.1103/PhysRevA.87.052309.

    [49] [49] MA X C, SUN S H, JIANG M S, et al. Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems[J]. Physical Review A, 2013, 88(2):022339. DOI: 10.1103/PhysRevA.88.022339.

    [50] [50] LODEWYCK J, DEBUISSCHERT T, GARCA-PATRN R, et al. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system[J]. Physical Review Letters, 2007, 98(3):030503. DOI: 10.1103/PhysRevLett.98.030503.

    [51] [51] NAMIKI R, HIRANO T. Security of continuous-variable quantum cryptography using coherent states: decline of postselection advantage[J]. Physical Review A, 2005, 72(2):024301. DOI: 10.1103/PhysRevA.72.024301.

    [52] [52] JOUGUET P, KUNZ-JACQUES S, DIAMANTI E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution[J]. Physical Review A, 2013, 87(6):062313. DOI: 10.1103/PhysRevA.87.062313.

    [53] [53] WANG T, HUANG P, WANG S, et al. Carrier-phase estimation for simultaneous quantum key distribution and classical communication using a real local oscillator[J]. Physical Review A, 2019, 99(2):022318. DOI: 10.1103/PhysRevA.99.022318.

    [54] [54] BRAUNSTEIN S L, PIRANDOLA S. Side-channel-free quantum key distribution[J]. Physical Review Letters, 2012, 108(13):130502. DOI: 10.1103/PhysRevLett.108.130502.

    [55] [55] LI Z Y, ZHANG Y, XU F H, et al. Continuous-variable measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(5):052301. DOI: 10.1103/PhysRevA.89.052301.

    [56] [56] MA X C, SUN S H, JIANG M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(4):042335. DOI: 10.1103/PhysRevA.89.042335.

    [57] [57] PIRANDOLA S, OTTAVIANI C, SPEDALIERI G, et al. High-rate measurement-device-independent quantum cryptography[J]. Nature Photonics, 2015, 9(6):397−402. DOI: 10.1038/nphoton.2015.83.

    [58] [58] USENKO V C, GROSSHANS F. Unidimensional continuous-variable quantum key distribution[J]. Physical Review A, 2015, 92(6):062337. DOI: 10.1103/PhysRevA.92.062337.

    [59] [59] WANG X Y, LIU W, WANG P, et al. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution[J]. Physical Review A, 2017, 95(6):062330. DOI: 10.1103/PhysRevA.95.062330.

    [60] [60] WANG X, CAO Y, WANG P, et al. Advantages of the coherent state compared with squeeze state in unidimensional continuous variable quantum key distribution[J]. Quantum Information Processing, 2018, 17(12):1−15. DOI: 10.1007/s11128-018-2118-0.

    [61] [61] LIAO Q, GUO Y, XIE C, et al. Composable security of unidimensional continuous-variable quantum key distribution[J]. Quantum Information Processing, 2018, 17(5):113. DOI: 10.1007/s11128-018-1881-2.

    [62] [62] GUO L, RAN Q, ZHAO W, et al. Unidimensional continuous-variable quantum key distribution based on basis-encoding coherent states protocol[J]. International Journal of Theoretical Physics, 2020, 59(2):1730−1741. DOI: 10.1007/s10773-020-04439-8.

    [63] [63] BIAN Y, HUANG L, ZHANG Y. Unidimensional two-way continuous-variable quantum key distribution using coherent states[J]. Multidisciplinary Digital Publishing Institute, 2021, 3(23):294. DOI: 10.3390/E23030294.

    [64] [64] HUANG L, ZHANG Y, CHEN Z, et al. Unidimensional continuous-variable quantum key distribution with untrusted detection under realistic conditions[J]. Entropy, 2019, 21(11):1100. DOI: 10.3390/e21111100.

    [65] [65] WANG T, LI L, LI M, et al. Unidimensional continuous-variable quantum key distribution with noisy source[J]. Quantum Information Processing, 2019, 19(1):3. DOI: 10.1007/s11128-019-2495-z.

    [66] [66] BAI D, HUANG P, ZHU Y, et al. Unidimensional continuous-variable measurement-device-independent quantum key distribution[J]. Quantum Information Processing, 2019, 19(2):53. DOI: 10.1007/s11128-019-2546-5.

    [67] [67] USENKO V C. Unidimensional continuous-variable quantum key distribution using squeezed states[J]. Physical Review A, 2018, 98(3):032321. DOI: 10.1103/PhysRevA.98.032321.

    Tools

    Get Citation

    Copy Citation Text

    LIU Wen-yuan, BAI Jian-dong, JIE Qi, JIN Jing-jing, LIU Ze-hui. Unidimensional Continuous-variable Measurement-device-independent Quantum Key Distribution Using Squeezed States[J]. Journal of Quantum Optics, 2024, 30(2): 20301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 10, 2024

    Accepted: Dec. 26, 2024

    Published Online: Dec. 25, 2024

    The Author Email: LIU Wen-yuan (liuweny@nuc.edu.cn)

    DOI:10.3788/jqo20243002.0301

    Topics