Chinese Journal of Lasers, Volume. 48, Issue 22, 2202009(2021)

Low Cycle Fatigue Behavior of GH3536 Alloy Formed via Laser Additive Manufacturing

Lairong Xiao1, Wei Tan1, Liming Liu2, Xiaoxuan Tu1, Zhenwu Peng1, Huan Wang2, and Xiaojun Zhao1、*
Author Affiliations
  • 1School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
  • 2Beijing Power Machinery Research Institute, Beijing 100074, China
  • show less
    References(24)

    [1] Chang K, Liang E Q, Zhang R et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports, 35, 3176-3182(2021).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Wang X Y. Research on the optimization of grain boundary character distribution and its effect on properties in Hastelloy X[D](2017).

    [4] Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 56, 141401(2019).

    [5] Hou H P, Liang Y C, He Y L et al. Microstructural evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 44, 0202007(2017).

    [6] Zheng Y L, He Y L, Chen X H et al. Elevated-temperature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers, 47, 0802008(2020).

    [7] Zhang Y Z, Hou H P, Peng S et al. Anisotropy of microstructure and mechanical properties of Hastelloy X alloy produced by selective laser melting[J]. Journal of Aeronautical Materials, 38, 50-56(2018).

    [8] Tomus D, Tian Y, Rometsch P A et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting[J]. Materials Science and Engineering A, 667, 42-53(2016).

    [9] Miner R V, Castelli M G. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation[J]. Metallurgical Transactions A, 23, 551-561(1992).

    [10] Hong H U, Kim I S, Choi B G et al. Effects of temperature and strain range on fatigue cracking behavior in Hastelloy X[J]. Materials Letters, 62, 4351-4353(2008).

    [11] Sabelkin V P, Cobb G R, Shelton T E et al. Mitigation of anisotropic fatigue in nickel alloy 718 manufactured via selective laser melting[J]. Materials & Design, 182, 108095(2019).

    [12] Esmaeilizadeh R, Keshavarzkermani A, Ali U et al. On the effect of laser powder-bed fusion process parameters on quasi-static and fatigue behaviour of Hastelloy X: a microstructure/defect interaction study[J]. Additive Manufacturing, 38, 101805(2021).

    [13] Lindström T, Calmunger M, Eriksson R et al. Fatigue behaviour of an additively manufactured ductile gas turbine superalloy[J]. Theoretical and Applied Fracture Mechanics, 108, 102604(2020).

    [15] Wang F D. Mechanical property study on rapid additive layer manufacture Hastelloy ® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 58, 545-551(2012).

    [16] Jin D, Zuo H Z, Liu B et al. Non-masing characteristic analysis and fatigue life prediction for 316L stainless steels[J]. China Mechanical Engineering, 31, 2931-2936(2020).

    [17] Zou C L, Chen L J, Pang J C et al. The low-cycle fatigue, fracture and life prediction of compacted graphite iron: influence of temperature[J]. Materials Science and Engineering A, 763, 138101(2019).

    [18] Han Y D, Zhang Z F, Xu L Y et al. Study on high temperature low cycle fatigue behavior of P92 steel weld metal[J]. Transactions of the China Welding Institution, 40, 11-14, 31, 161(2019).

    [19] Yang X R, Wang X H, Zhang W Y et al. Low cycle fatigue properties and predication of fatigue life for commercially purity zirconium[J]. Rare Metal Materials and Engineering, 48, 2515-2522(2019).

    [20] Huo H, Zhang A F, Qi Z J et al. Low-cycle fatigue performance of boron-modified TC4 deposited by laser melting[J]. Chinese Journal of Lasers, 47, 1202003(2020).

    [21] Qin L Y, Wu J B, Wang W et al. Microstructures and fatigue properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy fabricated using laser deposition manufacturing[J]. Chinese Journal of Lasers, 47, 1002008(2020).

    [22] Hao S, Chen L, Zou Z Y et al. Microstructural evolution and cyclic softening/hardening response of a TRIP-assisted duplex stainless steel[J]. Materials Science and Engineering A, 811, 141026(2021).

    [23] Wang M, Pang J C, Li S X et al. Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature[J]. Materials Science and Engineering A, 704, 480-492(2017).

    [24] Deng W K, Xu J H, Hu Y M et al. Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy[J]. Materials Science and Engineering A, 742, 813-819(2019).

    Tools

    Get Citation

    Copy Citation Text

    Lairong Xiao, Wei Tan, Liming Liu, Xiaoxuan Tu, Zhenwu Peng, Huan Wang, Xiaojun Zhao. Low Cycle Fatigue Behavior of GH3536 Alloy Formed via Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2021, 48(22): 2202009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: May. 6, 2021

    Accepted: Jun. 2, 2021

    Published Online: Nov. 2, 2021

    The Author Email: Zhao Xiaojun (zhaoxj@csu.edu.cn)

    DOI:10.3788/CJL202148.2202009

    Topics