Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0228010(2023)

Hyperspectral Remote Sensing Image Classification Model Based on S2AF-GCN

Hailin Song and Xili Wang*
Author Affiliations
  • School of Computer Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • show less
    Figures & Tables(20)
    Classification model of hyperspectral remote sensing images based on S2AF-GCN
    Renderings of spatial neighborhood feature aggregation. (a) European distance calculated by original features; (b) European distance calculated by aggregation features
    Connections between nodes of different classes
    Comparison of composition based on original features and aggregation features. (a) Random samples; (b) 5 nearest neighbors from original features; (c) 5 nearest neighbors from aggregation features
    Algorithm flow of S2AF-GCN
    Classification results on Indian Pines dataset. (a) False color; (b) ground truth; (c) FuNet-C; (d) S2GCN; (e) GCN(OF); (f) GCN(AF); (g) S2AF-GCN(OF); (h) S2AF-GCN(AF)
    Classification results on Pavia University dataset. (a) False color; (b) ground truth; (c) FuNet-C; (d) S2GCN; (e) GCN(OF); (f) GCN(AF); (g) S2AF-GCN(OF); (h) S2AF-GCN(AF)
    Classification results on Kennedy Space Center dataset. (a) False color; (b) ground truth; (c) FuNet-C; (d) S2GCN; (e) GCN(OF); (f) GCN(AF); (g) S2AF-GCN(OF); (h) S2AF-GCN(AF)
    Influence of nearest neighbor number K on the overall accuracy on different datasets. (a) Indian Pines; (b) Pavia University; (c) Kennedy Space Center
    OA of different models under different proportions of training samples. (a) Indian Pines; (b) Pavia University; (c) Kennedy Space Center
    • Table 1. Land cover category and dataset division on Indian Pines dataset

      View table

      Table 1. Land cover category and dataset division on Indian Pines dataset

      Class No.Class nameNumber of samples
      TrainTestTotal
      105(1%)1026110366
      1Corn Notill1414201434
      2Corn Mintill8826834
      3Corn3231234
      4Grass Pasture5492497
      5Grass Trees7740747
      6Hay Windrowed5484489
      7Soybean Notill9959968
      8Soybean Mintill2424442468
      9Soybean Clean6608614
      10Wheat2210212
      11Woods1212821294
      12Buildings Grass Trees Drives4376380
      13Stone Steel Towers29395
      14Alfalfa25254
      15Grass Pasture Mowed12526
      16Oats11920
    • Table 2. Land cover category and dataset division on Pavia University dataset

      View table

      Table 2. Land cover category and dataset division on Pavia University dataset

      Class No.Class nameNumber of samples
      TrainTestTotal
      427(1%)4234942776
      1Asphalt6665656631
      2Meadows1861846318649
      3Gravel2120782099
      4Trees3130333064
      5Metal Sheets1313321345
      6Bare Soil5049795029
      7Bitumen1313171330
      8Bricks3736453682
      9Shadows10937947
    • Table 3. Land cover category and dataset division on Kennedy Space Center dataset

      View table

      Table 3. Land cover category and dataset division on Kennedy Space Center dataset

      Class No.Class nameNumber of samples
      TrainTestTotal
      52(1%)51595211
      1Scrub8753761
      2Willow swamp2241243
      3CP hammock3253256
      4Slash pine3249252
      5Oak/Broadleaf2159161
      6Hardwood2227229
      7Swap1104105
      8Graminoid marsh4427431
      9Spartina marsh5515520
      10Cattail marsh4400404
      11Salt marsh4415419
      12Mud flats5498503
      13Water9918927
    • Table 4. Comparison of each method

      View table

      Table 4. Comparison of each method

      ModelCNN feature extractionInformation usedFeatures used in constructing graphAdjacency matrix
      FuNet-C2DCNNSpatial and spectral informationOriginal spectral featuresInaccurate
      S2GCNNoSpatial and spectral informationOriginal spectral featuresInaccurate
      S2AF-GCNNoSpatial and spectral informationAggregation featuresAccurate
    • Table 5. Comparison of similarities and differences of various methods in ablation experiment

      View table

      Table 5. Comparison of similarities and differences of various methods in ablation experiment

      ModelClassify using original featuresClassify using aggregation featuresConstruct adjacency matrix using original featuresConstruct adjacency matrix using aggregation featuresAccurate adjacency matrix
      GCN(OF)×
      GCN(AF)×
      S2AF-GCN(OF)
      S2AF-GCN(AF)
    • Table 6. Classification results on Indian Pines dataset

      View table

      Table 6. Classification results on Indian Pines dataset

      Class No.FuNet-CS2GCNGCN(OF)GCN(AF)S2AF-GCN(OF)S2AF-GCN(AF)
      181.2083.1061.2767.1181.8382.18
      276.1581.4824.4657.5155.5785.84
      389.6198.2739.8347.6251.5260.17
      478.6678.0573.3774.1982.1178.46
      571.7692.4385.5487.4389.0599.05
      699.38100.0094.4297.1199.79100.00
      773.3082.5961.9487.1778.8388.22
      861.4675.1657.9074.0264.5781.18
      946.8878.1331.4139.8059.0570.07
      1099.52100.0091.9099.05100.00100.00
      1196.8099.2295.1694.3897.5898.75
      1257.1866.7638.8371.8166.2267.82
      1383.8786.0280.6580.6577.4288.17
      1492.3184.6232.6982.6976.9294.23
      1572.0092.0036.0092.0080.00100.00
      1642.1157.8947.3773.6863.1668.42
      OA /%74.9984.0863.1975.5376.4885.51
      AA /%76.3984.7359.5576.6476.3485.16
      Kappa0.71810.81960.58230.72260.73170.8353
    • Table 7. Classification results on Pavia University dataset

      View table

      Table 7. Classification results on Pavia University dataset

      Class No.FuNet-CS2GCNGCN(OF)GCN(AF)S2AF-GCN(OF)S2AF-GCN(AF)
      185.7395.5588.3591.3291.9394.58
      299.2098.2695.7995.7298.6099.13
      377.5379.4068.6262.0377.5382.24
      457.7386.5590.7492.3589.8589.99
      599.47100.0095.3599.4099.55100.00
      675.3489.5474.1189.2790.7298.77
      796.1356.4261.7388.8492.1099.92
      885.2791.8582.3697.3195.5898.86
      999.89100.0099.15100.00100.00100.00
      OA /%89.0093.2988.2492.5294.5896.95
      AA /%86.2588.6284.0290.6992.8795.43
      Kappa0.85110.91030.84290.90090.92780.9561
    • Table 8. Classification results on Kennedy Space Center dataset

      View table

      Table 8. Classification results on Kennedy Space Center dataset

      Class No.FuNet-CS2GCNGCN(OF)GCN(AF)S2AF-GCN(OF)S2AF-GCN(AF)
      198.41100.0092.9696.9595.2298.94
      2100.00100.0087.9794.1998.7698.34
      345.06100.0082.2190.9170.36100.00
      46.8359.8417.2758.6364.2672.69
      590.57100.0061.0162.2692.4597.48
      622.4762.5650.6659.0364.3292.95
      740.3869.2337.5046.1540.3876.92
      883.84100.0088.5291.5794.38100.00
      983.6983.6984.8583.1189.9083.69
      1096.5094.0071.0093.7580.2594.00
      11100.00100.0080.2487.4787.2397.11
      1296.5096.3994.5895.7895.3896.39
      13100.00100.0099.7899.46100.00100.00
      OA /%84.0993.3582.0588.4188.5894.92
      AA /%74.1689.6772.9781.4882.5392.96
      Kappa0.82280.92590.79990.87070.87270.9435
    • Table 9. Running time of FuNet-C, S2GCN, S2AF-GCN models on three datasets

      View table

      Table 9. Running time of FuNet-C, S2GCN, S2AF-GCN models on three datasets

      DatasetFuNet-CS2GCNS2AF-GCN
      Indian Pines420117182
      Pavia University963133240
      Kennedy Space Center2804056
    • Table 10. Classification results of S2AF-GCN on different datasets under different aggregation times

      View table

      Table 10. Classification results of S2AF-GCN on different datasets under different aggregation times

      m+1Indian PinesPavia UniversityKennedy Space Center
      OA /%AA /%KappaOA /%AA /%KappaOA /%AA /%Kappa
      277.5280.360.745193.9892.340.920090.8385.290.8978
      481.5682.240.791295.8994.570.945592.6187.540.9177
      684.8184.010.827696.4295.520.952693.4789.090.9272
      885.5185.160.835396.6595.430.956194.9292.960.9435
      1085.0585.190.830496.6995.940.959592.4487.650.9157
      1283.7485.140.815695.9693.410.946293.1489.120.9236
    Tools

    Get Citation

    Copy Citation Text

    Hailin Song, Xili Wang. Hyperspectral Remote Sensing Image Classification Model Based on S2AF-GCN[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 24, 2022

    Accepted: Mar. 14, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Xili Wang (wangxili@snnu.edu.cn)

    DOI:10.3788/LOP220612

    Topics