Chinese Journal of Lasers, Volume. 42, Issue 6, 602001(2015)

Experimental Study of Laser-Induced Damage of Optical Components Surface Owing to Particle Contamination in High Power Laser Facility

Miao Xinxiang*, Yuan Xiaodong, Lü Haibing, Cheng Xiaofeng, Zheng Wanguo, and Zhou Guorui
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] C Macilwain. Laser project‘faces optics hurdle’[J]. Nature, 1999, 401(6750): 201-202.

    [2] [2] W Simmons, R Godwin. Nova laser fusion facility-design, engineering and assembly overview[J]. Nucl Technol, 1983, 4: 8-24.

    [3] [3] Lin Zunqi. Progress of laser fusion[J]. Chinese J Lasers, 2010, 37(9): 2202-2207.

    [6] [6] J Honing, M A Norton, Hollingsworth, et al. Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants[C]. SPIE, 2005, 5647: 129-135.

    [7] [7] F Y Génin, M D Feit, M R Kozlowski, et al.. Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on frontsurface contamination particles[J]. Appl Opt, 2000, 39(21): 3654-3663.

    [8] [8] M D Feit, A M Rubenchik, D R Faux, et al.. Modeling of laser damageInitiated by surface contamination[J]. Laser-Induced Damage in Optical Materials, 1996, 2966: 417-424.

    [9] [9] S Palmier, J L Rullier, J Capoulade, et al.. Effect of laser irradiation on silica substrate contaminated by aluminum particles[J]. Applied Optics, 2008, 47(8): 1164-1170.

    [10] [10] S S P Palmier, I Tovena, R Courchinoux, et al.. Laser damage to optical components induced by surface chromium particles[C]. SPIE, 2005, 5647: 156-164.

    [11] [11] S C Sommer, I F Stowers, D E van Doren. Clean construction protocol for the National Ignition Facility beampath and utilities[J]. Journal of the IEST, 2003, 46(1): 85-97.

    [12] [12] International Organization for Standardization. ISO 14644-9. Cleanrooms and Associated Controlled Environments-Part 9: Classification of Surface Cleanliness by Particle Concentration[S]. Switzerland: ISO, 2012.

    [13] [13] G Guehenneux, M Veillerot, I Tovena. Evaluation of the airborne molecular contamination inside the LIL[J]. Nucl Instrum, 2006, 557(2): 676-683.

    [14] [14] J Honing. Cleanliness improvements of national ignition Facility amplifiers as compared to previous large-scale lasers[J]. Opt Eng, 2004, 43(12): 2904-2911.

    [15] [15] Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al.. Laser Irradiation Effect[M]. Beijing: National Defense Industry Press, 2002: 264-267.

    [16] [16] Wang Libin, Ma Weixin, Ji Lailin, et al.. Influence of metal particles on damage threshold of fused silica at 3ω[J]. Chinese J Lasers, 2012, 39(5): 0502004.

    [17] [17] Wei Chaoyang, He Hongbo, Shao Jianda, et al.. Thermodynamics damage of optical coatings induced by absorbing inclusion thermal irradiation[J]. Acta Optica Sinica, 2008, 28(4): 809-812.

    [19] [19] M D Feit, M R Rubenchik. Laser intensity modulation by nonabsorbing defects[C]. Second International Conference on Solid State Lasers for Application to ICF, 1997.

    [20] [20] Guo Yajing, Tang Shunxing, Tang Qing, et al.. Study of laser-induced damage in fused silica by 351nm laser near-field irradiation [J]. Chinese J Lasers, 2013, 40(5): 0502004.

    [21] [21] Y F Lu, Y W Zhen, W D Song. Characterization of ejected particles during laser cleaning[J]. Journal of Applied Physics, 2000, 8(1): 549-552.

    CLP Journals

    [1] Xu Jiao, Zhong Zheqiang, Huang Renshuai, Zhang Bin. Thermal Damages on Thin-Film Components Induced by Surface Impurities and Its Statistic Characteristics[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103101

    [2] ZHU Zheng-hao, HAO Yan-fei, SUN Ming-ying, PANG Xiang-yang, LIU Zhi-gang, ZHU Jian-qiang. Online Detection of Airborne Molecular Contamination with Optical Microfiber and Quartz Crystal Microbalance[J]. Collection Of theses on high power laser and plasma physics, 2016, 14(1): 912008

    [3] WANG Gang, CHEN Zhen, LI Yan-na, GONG Fa-quan. Observation and analysis of surface defects on cavity mirror of chemical oxygen-iodine laser[J]. Optics and Precision Engineering, 2016, 24(12): 2948

    Tools

    Get Citation

    Copy Citation Text

    Miao Xinxiang, Yuan Xiaodong, Lü Haibing, Cheng Xiaofeng, Zheng Wanguo, Zhou Guorui. Experimental Study of Laser-Induced Damage of Optical Components Surface Owing to Particle Contamination in High Power Laser Facility[J]. Chinese Journal of Lasers, 2015, 42(6): 602001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 9, 2014

    Accepted: --

    Published Online: Sep. 23, 2022

    The Author Email: Xinxiang Miao (miaoxinxiang.714@163.com)

    DOI:10.3788/cjl201542.0602001

    Topics