Laser & Optoelectronics Progress, Volume. 57, Issue 20, 201016(2020)
Multifocus Fusion Image Enhancement Based on Image Subtraction Angiography and NSML
Fig. 2. Removal of detail processing results for different r values. (a) IDM; (b) 0.00001 pixel; (c) 0.0001 pixel; (d) 0.001 pixel; (e) 0.01 pixel; (f) 0.1 pixel
Fig. 4. Quantitative results of different parameters on fusion index. (a) r; (b) w; (c) ε
Fig. 5. Decision graphs and fusion results obtained by different detection methods. (a)I1; (b) MWGF; (c) CNN; (d) Ma'; (e) GFDF
Fig. 6. Whitening afterimages obtained by different detection methods. (a) I1; (b) NSCT_SR; (c) ASR; (d) MGFF
Fig. 7. Adaptability analysis results of color images. (a) QMI; (b) QM; (c) QY; (d) QCB
Fig. 8. Adaptability analysis results of grayscale images. (a) QMI; (b) QM; (c) QY; (d) QCB
|
|
|
Get Citation
Copy Citation Text
Shuai Tian, Yafei Ren, Xinye Shao, Jianlong Shao. Multifocus Fusion Image Enhancement Based on Image Subtraction Angiography and NSML[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201016
Category: Image Processing
Received: Jan. 7, 2020
Accepted: Mar. 9, 2020
Published Online: Oct. 13, 2020
The Author Email: Jianlong Shao (sj-long@163.com)