Chinese Journal of Lasers, Volume. 49, Issue 15, 1507403(2022)

Quantitative Imaging of Blood Glucose Concentration Using Organic Nanoparticle Transducer

Jing Liu1,2, Xiaofeng Fang2, Zhen Yuan1, and Changfeng Wu2、*
Author Affiliations
  • 1Cancer Center, Faculty of Health Science, University of Macau, Macau SAR 999078, China
  • 2Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • show less
    References(26)

    [1] Gregg E W, Sattar N, Ali M K. The changing face of diabetes complications[J]. The Lancet Diabetes & Endocrinology, 4, 537-547(2016).

    [2] Bommer C, Sagalova V, Heesemann E et al. Global economic burden of diabetes in adults: projections from 2015 to 2030[J]. Diabetes Care, 41, 963-970(2018).

    [3] Danne T, Nimri R, Battelino T et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 40, 1631-1640(2017).

    [4] Edelman S V, Argento N B, Pettus J et al. Clinical implications of real-time and intermittently scanned continuous glucose monitoring[J]. Diabetes Care, 41, 2265-2274(2018).

    [5] Lee I, Probst D, Klonoff D et al. Continuous glucose monitoring systems-current status and future perspectives of the flagship technologies in biosensor research[J]. Biosensors and Bioelectronics, 181, 113054(2021).

    [6] Wang J. Electrochemical glucose biosensors[J]. Chemical Reviews, 108, 814-825(2008).

    [7] Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020)[J]. Chemical Society Reviews, 49, 7671-7709(2020).

    [8] Nightingale A M, Leong C L, Burnish R A et al. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor[J]. Nature Communications, 10, 2741(2019).

    [9] Shibata H, Heo Y J, Okitsu T et al. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 17894-17898(2010).

    [10] Heo Y J, Shibata H, Okitsu T et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 13399-13403(2011).

    [11] Wu M X, Zhang Y J, Liu Q et al. A smart hydrogel system for visual detection of glucose[J]. Biosensors and Bioelectronics, 142, 111547(2019).

    [12] Huang S, Zhu S Y, Zhao M M et al. Near-infrared spectroscopy characteristics of glucose in tissue phantom[J]. Laser & Optoelectronics Progress, 57, 153006(2020).

    [13] Li F, Zhao Y J, Kong L Q et al. Phantom experimental verification of non-invasive blood glucose measurement based on visible image[J]. Acta Optica Sinica, 40, 0636001(2020).

    [14] Li J, Li S, Chen J J et al. Progress and biomedical application of non-contact photoacoustic imaging[J]. Chinese Journal of Lasers, 48, 1918005(2021).

    [15] Wu C F, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine[J]. Angewandte Chemie (International Ed. in English), 52, 3086-3109(2013).

    [16] Wu C F, Bull B, Christensen K et al. Ratiometric single-nanoparticle oxygen sensors for biological imaging[J]. Angewandte Chemie (International Ed. in English), 48, 2741-2745(2009).

    [17] Chen S J, Wang H, Hong Y N et al. Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging[J]. Materials Horizons, 3, 283-293(2016).

    [18] Reisch A, Klymchenko A S. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging[J]. Small, 12, 1968-1992(2016).

    [19] Sun K, Tang Y, Li Q et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer[J]. ACS Nano, 10, 6769-6781(2016).

    [20] Sun K, Yang Y K, Zhou H et al. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone[J]. ACS Nano, 12, 5176-5184(2018).

    [21] Sun K, Ding Z Y, Zhang J C et al. Enhancing the long-term stability of a polymer dot glucose transducer by using an enzymatic cascade reaction system[J]. Advanced Healthcare Materials, 10, e2001019(2021).

    [22] Sun K, Liu S Y, Liu J et al. Improving the accuracy of pdot-based continuous glucose monitoring by using external ratiometric calibration[J]. Analytical Chemistry, 93, 2359-2366(2021).

    [23] Biniek K, Levi K, Dauskardt R H. Solar UV radiation reduces the barrier function of human skin[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 17111-17116(2012).

    [24] Fang X F, Chen X Z, Li R Q et al. Multicolor photo-crosslinkable AIEgens toward compact nanodots for subcellular imaging and STED nanoscopy[J]. Small, 13, 1702128(2017).

    [25] Wu C F, Szymanski C, McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 22, 2956-2960(2006).

    [26] Wu C F, Peng H S, Jiang Y F et al. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles[J]. The Journal of Physical Chemistry B, 110, 14148-14154(2006).

    Tools

    Get Citation

    Copy Citation Text

    Jing Liu, Xiaofeng Fang, Zhen Yuan, Changfeng Wu. Quantitative Imaging of Blood Glucose Concentration Using Organic Nanoparticle Transducer[J]. Chinese Journal of Lasers, 2022, 49(15): 1507403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Bio-Optical Sensing and Manipulation

    Received: Nov. 25, 2021

    Accepted: Jan. 19, 2022

    Published Online: Jul. 29, 2022

    The Author Email: Wu Changfeng (wucf@sustech.edu.cn)

    DOI:10.3788/CJL202249.1507403

    Topics